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Abstract

This paper develops the nonparametric identification of models with production

complementarities, worker-firm specific disutility of labor and search frictions.

Mobility in the model is subject to preference shocks, and we assume that firms

can write wage contracts. We develop a constructive proof for the nonpara-

metric identification of the model primitives from matched employer-employee

data. We use the estimated model to decompose the sources of wage dispersion

into worker heterogeneity, compensating differentials, and search frictions that

generate between-firm and within-firm dispersion. We find that compensating

differentials are substantial on average, but the contribution differs greatly be-

tween the lowest and highest types of workers. Finally, we use the model to

provide an economic interpretation of several empirical regularities.
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Introduction
In his influential lecture series, Mortensen (2003) identifies four key economic forces

that contribute to the noticeably large cross-sectional wage inequality observed in

most developed economies. The first is the inherent productivity differences between

workers. The second is a Rosen (1986) compensating differentials channel where

wages offset the varying disutility of labor between employers. The third is the wage

dispersion channel caused by market frictions. The fourth is the endogenous matching

of workers with firms in the presence of match complementarities as in Becker (1973),

Sattinger (1993).

The relative importance of each of these channels has direct implications for the

efficiency and redistributive effects of labor policies. For example, if all wage inequal-

ity is due to compensating differential, redistributive labor taxation might increase

inequality in the economy rather than alleviate it.

Although theoretically well defined, when studying these four channels empirically,

we face an immediate barrier even in the presence of detailed matched employer-

employee data: the productivities and valuations of workers and jobs are neither

directly observed nor exogenously shifted. Workers and firms are forward-looking, and

wages and employment decisions reflect a combination of all channels. Quantifying

the different forces requires combining a coherent theory with a sound identification

strategy.

This paper develops a theoretical model of the labor market that includes all

four channels, coupled with an identification result for the primitives from matched

data. Our identification approach first uses the nonlinear estimator of Bonhomme,

Lamadon, and Manresa (2019, hereafter BLM) to elicit the unobserved heterogeneity

of workers and firms and then shows how to recover the primitives of the model from

type-specific wages and mobility. The identification suggests an estimation strategy

that we use to analyze Swedish administrative records. Our first main empirical

finding is that workers with different productivities rank firms differently, leading

to both worker heterogeneity and composition differences being important factors in

explaining wage dispersion between and within employers. Our second is that non-

pecuniary aspects of jobs are a significant contributor to wage dispersion, explaining

half of within worker wage dispersion, leaving the other half to the effect of search
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frictions.

Our theoretical model brings together the theory of complementarities of Becker

(1973), the presence of compensating differential of Rosen (1986) and the wage setting

in the presence of on the job search of Postel-Vinay and Robin (2002). The economy

is made up of heterogeneous workers and firms. When a worker and a firm are

matched, the firm collects output, pays a wage to the worker, and the worker endures a

disutility of working (equivalently, enjoys an amenity). Both production and disutility

are flexible functions of the worker and firm type, allowing for complementarity or

substitability between chosen partners. Firms are risk neutral, and workers are risk

averse, and both are forward-looking. The meeting between firms and workers is

constrained by search frictions. Both employed and unemployed workers can search

for jobs and when they meet a vacancy, they draw a mobility preference shock. Upon

meeting, firms will offer long-term contracts that price in the mobility shocks.

Solving the equilibrium is more challenging than in the existing literature for two

main reasons: first, workers are risk-averse, making the joint value of a match de-

pendent on the wage; and second, there are complementarities and on-the-job search.

Yet, by defining the surplus as the highest present value the firm can offer to the

worker, we are able to characterize the equilibrium in a very concise way. We first

show that the optimal contract is a simple extension of the matching of outside offers

of Postel-Vinay and Robin (2002), even when firm types are private information and

mobility costs are contractible. Second, we show that our surplus satisfies a surpris-

ingly simple and intuitive equation that extends Postel-Vinay and Robin (2002) and

Lise, Meghir, and Robin (2016). Third, we show that the equilibrium wage can be

directly expressed as a function of the surplus to the worker. These theoretical results

are crucial when taking our framework to the data.

The model produces a range of implications for the wages and mobility patterns of

workers. The presence of interactions in match value, through production and disu-

tility, combined with capacity constraints, leads to a Becker (1973) role for sorting in

the presence of supermodularity. This insight was first extended to random search in

Shimer and Smith (2000) and prevails in our context. Importantly, different workers

have different ranking across employers, which generates sorting in equilibrium. This

sorting will be imperfect, potentially leading to allocative losses compared to a fric-

tionless environment. This also leads to wage differences between employers for the
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same worker, as surpluses inherit some of the interactions of production. At the same

time, firm-specific amenities allow for an additional channel through which firm wages

might differ. As in Rosen (1986), firms with comparatively worse disutility will have

to compensate the worker in the form of higher wages at the margin. The importance

of the non-pecuniary characteristic of jobs has been documented in several recent pa-

pers (Sorkin, 2018; Lamadon, Mogstad, and Setzler, 2022; Lentz, Piyapromdee, and

Robin, 2023).

These features are important to keep in mind when considering the decomposition

of earnings in matched data pioneered by Abowd, Kramarz, and Margolis (1999,

hereafter AKM). The lessons from such a decomposition, as presented in Bonhomme

et al. (2023) are that firm premia differences account for between 5% and 15% of the

cross-sectional variance in earnings, while the sorting of high-paid workers to high-

paying firms accounts for 10% to 20%. Our paper provides a structural interpretation

of these numbers by linking sorting and wage premia to productivity, disutility, and

the presence of search frictions.1

A key distinction in the environment we study is that the worker- and firm-effects

from an AKM estimation do not correspond to the actual worker- and firm-types of

the model. It has been pointed out by Eeckhout and Kircher (2011) and Hagedorn,

Law, and Manovskii (2017) that the non-monotonicity in wages is at odds with the log-

additive assumption of the AKM decomposition. Here, we consider the log-additive

decomposition as an informative moment of the data, but we use a different approach

for the identification and estimation of worker- and firm-types.

Our identification employs a series of steps and results. First, we show that our

framework is compatible with the assumptions of the nonlinear estimator of BLM.

In contrast to AKM estimation, the types from BLM estimation correspond to the

model types. And, conditional on estimated types, the estimated wages, mobility, and

allocations from BLM are consistent with the data generating process of the model.

This is the first step. Next, we show that wages, allocations, and mobility estimates

can be inverted to recover the underlying structural parameters of the model. A key

property of the model is that the surplus of the worker can be expressed using wages,

1Lamadon, Mogstad, and Setzler (2022) provides a similar structural mapping in a model without
search frictions.
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inversely weighted by the probability of either a wage increase or a move out of the

job, all of which are known for each worker and firm pair from the first step. This

property holds more generally than in our particular context (as long as the wage

contract is optimal) and allows one to identify surpluses quite generally. The final

step is to go from surpluses to production and disutilities. This is made possible by

the properties of the contract and by the simple expression of the surplus. We show,

for example, how the value of a vacancy can be constructed from wages extracted

from BLM estimates once the surplus is known.

Although our identification allows for a flexible mobility shock distribution, there

is a very transparent interpretation for the case of logistic distribution. In this case,

we can use mobility from the BLM estimation stage to directly recover the match

surplus (up to scale)2, then wages can be used to separate production from disutility

(amenities). This is the strategy that we employ in estimation.

We finally use our model to investigate the underlying forces leading to the ob-

served sorting, including the potential role of complementarities in production and

amenities. We find that heterogeneity across workers accounts for the majority of

wage dispersion we observe in the data; there is substantial positive sorting of workers

across jobs; and that just under half of within-worker variation in wages is attributable

to compensating differentials. Importantly, the share of within-worker variation due

to compensating differentials (i.e., wage variation that is not associated with variation

in the worker’s utility) is markedly different by worker type. It accounts for less than

10% of the variation in wages for workers of the highest type, but more than 50% for

the lowest type. We estimate that the process of sorting workers into firms accounts

for 26% of the wage dispersion between workers and accounts for 18% of the over-

all wage dispersion. Finally, we use the model to interpret several well-documented

empirical regularities.

Our paper is most closely related to several recent contributions. The first is

Hagedorn et al. (2017), which demonstrates the identification of the equilibrium fric-

tional sorting model of Shimer and Smith (2000) where workers search only from

2This uses a revealed preference argument similar to Sorkin (2018), albeit for each type separately.
See Arcidiacono et al. (2023) who present a partial equilibrium search model with amenities and
preference shocks that exploits insights from dynamic discrete choice estimation.
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unemployment. In this model, a worker’s wage rank within a firm is equivalent to

a worker’s productivity rank within a firm, and transitivity across firms allows for a

complete ranking of workers based on wages. The second is Sorkin (2018), who uses

worker mobility patterns to classify firms according to revealed preference, under the

assumption of a common ranking of firms by all workers, in the spirit of the wage

posting model of Burdett and Mortensen (1998). Unlike these two papers, we pro-

vide identification in a class of models in the spirit of Postel-Vinay and Robin (2002)

in which the wage may not order worker types within a firm due to compensating

differentials from a variety of sources and where workers do not need to agree on a

common ranking of firms due to either production complementarities or worker-firm

specific disutility of labor or amenities. Our paper shares many characteristics with

Taber and Vejlin (2020). An important difference is that our identification proofs pro-

vide a mapping that can be directly adapted to estimate the structure of the model,

without the need to repeatedly solve and simulate, providing additional transparency.

Lamadon, Mogstad, and Setzler (2022) proposes a frictionless model with several of

the features we study including interactions in production and in amenities. They

demonstrate the fundamental role of interactions in amenities for understanding the

distribution of firm size, wage premia and sorting while making clear that the pres-

ence of firm effects could be driven by compensating differential rather than market

power. In a dynamic context with search friction, we solve the key idenitifcation

problem of separating these channels and demonstrate the empirical importance of

amenities in understanding systematic worker flows across jobs, particularly for work-

ers with the lowest average pay. Morchio and Moser (2023) find that interactions in

amenities explain a substantial fraction of the gender pay gap in Brazil. As in Balke

and Lamadon (2022), we model workers as risk-averse and allow firms to choose op-

timal contracts. In common with these papers, the empirical analysis uses matched

employer-employee data, in our case, from Sweden (see Friedrich et al., 2022).

We proceed as follows. In Section 1 we present the model, which we characterize

in Section 2. We prove nonparametric identification in Section 3. In Section 4 we

discuss the data and present the estimates. We present the model decompositions of

the wages and the interpretation of the empirical regularities in Section 5, followed by

the conclusion. The proofs are collected in Appendix A.1, with additional derivations

and robustness collected in Online Appendix B.
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1 The labor market model
We consider a steady-state economy populated with heterogeneous workers and firms.

Time is discrete. Workers and firms are forward-looking, discount the future at a rate

r, and do not have a finite horizon.

1.1 Agents and states
Workers have heterogeneous skills indexed by x. Firms are heterogeneous in pro-

duction technology and are indexed by y. We denote by ℓ(x) the measure of type x

workers in the population, with the total measure normalized to one. The measure

of unemployed workers of type x is ℓ0(x) and the measure of matches of type (x, y) is

ℓ1(x, y), with ℓ0(x) +
∫
ℓ1(x, y) dy = ℓ(x). The corresponding total measures are L0

and L1 = 1− L0.

Firms post job vacancies and employ workers. Each firm can employ multiple

workers, potentially of different types, where the total firm output is the sum of the

output for each match, and hiring and wage contract decisions are made independently

between jobs. Let n(y) denote the measure of jobs of type y, which may be vacant

or matched to a worker, with the total measure N . We denote by v(y) the measure

of job openings of type y and by V the total number of vacancies, with n(y) =

v(y) +
∫
ℓ1(x, y) dx.

We assume that ℓ(x) and n(y) are exogenous, with v(y), ℓ0(x), and ℓ1(x, y) de-

termined in equilibrium. To simplify the notation, we treat x and y as continuous

variables, but they can be discrete and will be in the empirical application.

1.2 Timing of events
At the beginning of each period, each worker can be unemployed or employed. The

timing of events during the period and for each employment situation is as follows.

Unemployed workers. When not working, workers enjoy the utility of home pro-

duction b(x) during the period. At the end of the period, each unemployed worker

contacts a job vacancy with probability λ0. This vacancy, y, is drawn from the cross

section of vacancies, with probability density v(y)/V . Upon meeting, the workers

draw an instantaneous utility cost shock ξ from the distribution G0 (with negative

support and density g0), which they only experience if they move, in this case ac-

cepting the job. We assume that firms make take-it-or-leave-it offers to unemployed
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workers in a way that we will describe below.

Employed workers. A job produces f(x, y) during the period. Workers receive a

wage w that they value at utility flow u(w). They incur an overall flow cost c(x, y)

from providing labor in this job, net of any amenity value. We will use the terms

disutility of labor and amenity interchangeably. Their flow utility from a job is

u(w)−c(x, y). Job costs or amenities are predetermined and set up at the foundation

of the firm either as fixed characteristics or because of location.

At the end of the period, the match is exogenously destroyed with probability

δ(x, y). The job becomes vacant and the worker becomes unemployed, remaining as

such until the following period. The match continues with probability δ(x, y) ≡ 1 −
δ(x, y). The worker may then contact an alternative vacancy with probability λ1. This

vacancy is also drawn from the cross section of vacancies, described by the probability

density v(y′)/V . At the time of meeting, the worker draws an instantaneous mobility

shock ξ from the distribution G1 (with full support and density g1). We assume that

both firms observe the realized ξ and compete for the worker’s services in an auction

that we will describe below.

Meeting technology. Let M(L, V ) be the number of meetings per unit of time,

where L is the effective number of workers searching and V is the total number of

vacancies. Specifically, L = L0 + κL1, where κ is the relative search efficiency of

the employed workers. We define the equilibrium meeting rates for unemployed and

employed workers by

λ0 =
M

L
, λ1 = κ

M

L
, and λj = (1− λj). (1)

Similarly, a vacancy meets an unemployed worker with probability λ0L0/V , drawing a

type x from the distribution ℓ0(x)/L0. It meets an employed worker with probability

λ1L1/V , drawing from the cross-sectional distribution ℓ1(x, y)/L1.

1.3 Poaching
Define W0(x) as the present value of the unemployed worker and Π0(y) as the value of

a vacancy. An employment contract promises a value W to the worker and W must

be strictly greater than W0(x) for employment to be preferred to unemployment. We

call the difference R = W −W0(x) ≥ 0 the surplus of the worker or the value of the

contract.
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Define Π1(x, y, R) as the largest present value of profit that a firm can achieve

when employing the worker and providing that worker with a surplus of R. Implicit

in this definition is a contracting space, which we will define later. The smallest value

that satisfies the worker’s participation constraint is R = 0 and whenever Π1(x, y, 0)

is positive, there is value to be shared between the worker and the firm. In this case,

we say that the match is viable and denote the highest value of R that satisfies the

firm’s participation constraint by S(x, y).

In Section 1.4 we will characterize the contract that delivers a promised value R.

In this subsection, we first describe how the contract value R is determined in the case

of poaching, that is, the competition for a worker between two potential employers.

Suppose that a worker of type x employed in a firm of type y is approached by

another firm of type y′. Poaching opens up the possibility of making a move, which

is associated with a mobility value ξ. We assume that both x and ξ are common

knowledge. However, as in standard auctions, we do not assume that the firm types

are observable.3

Definition 1. The poaching mechanism. The incumbent and the poaching firms

report their reservation surpluses, say B and B′, not necessarily equal to S(x, y) and

S ′(x, y). The mechanism then makes the following prescriptions:

1. IfB′+ξ > max {B, ξ}, the poacher wins and must deliver the surplus max {B, ξ}−
ξ to the worker, who receives a total of max {B, ξ} after the move.

2. If B ≥ max {B′ + ξ, ξ} = B′++ξ (with B′+ = max{B′, 0}), the incumbent wins

and must provide a surplus of at least B′+ + ξ to the worker.

3. If ξ > max {B,B′ + ξ} the worker moves to unemployment and collects ξ.

We focus on strategies where the bid B from the incumbent is credible, that is,

even in cases where the incumbent loses for sure, there has to exist a feasible strategy

that would deliver B to the worker.

1.4 The firm’s problem
The employer faces two separate decision problems. First, it must choose a bid B(ξ)

in the event that the worker meets a vacancy and draws a mobility shock ξ. Second,

for a given promised value R, it must decide how it will be implemented through

wages and separations.

3See Online Appendix B.1 for an ascending auction interpretation of this mechanism.
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An employment contract can be defined recursively as a current worker surplus

R, a wage w for the first period and continuation values at the end of the first period:

the status quo value R0 for a worker who is not approached by another firm, and the

retention value R1(B
′, ξ) for a worker who is contacted by a firm with a bid B′ and

a mobility shock ξ. Let F0 be the distribution of bids, which will be characterized

later.

Consider a firm y employing a worker x with a promised surplus R. In calculating

its profit Π1(x, y, R), the firm anticipates all future events. In case of poaching at the

end of the current period, the firm assumes that the poacher will abide by the mech-

anism. Therefore, if B(ξ) < B′+ + ξ the poacher wins, the incumbent firm receives

Π0(y), and the worker collects W0(x)+max {B(ξ), ξ}. If B(ξ) ≥ B′++ξ, the current

employer wins and the mechanism imposes a minimum payment of W0(x)+B′++ξ to

the worker. It is a minimum payment because it may be below the promised surplus

R1. For any promised worker surplus R ≤ S, the firm problem is

Π1(x, y, R) = max
{w,R0,R1(B′,ξ),B(ξ)}

{
f(x, y)− w +

δ(x, y)

1 + r
Π0(y) +

δ(x, y)λ1

1 + r
Π1(x, y, R0)

+
δ(x, y)λ1

1 + r

∫∫ [
1{B(ξ)≥B′++ξ}Π1(x, y, R1(B

′, ξ))

+ 1{B(ξ)<B′++ξ}Π0(y)
]
dF0(B

′|x, ξ) dG1(ξ)
}
, (2)

subject to the constraints of promise keeping, the auction, and participation:

W0(x) +R = u(w)− c(x, y) +
δ(x, y)

1 + r
W0(x) +

δ(x, y)λ1

1 + r
(W0(x) +R0)

+
δ(x, y)λ1

1 + r

∫∫ [
1{B(ξ)≥B′++ξ} (W0(x) +R1(B

′, ξ))

+ 1{B(ξ)<B′++ξ} (W0(x) + max {B(ξ), ξ})
]
dF0(B

′|x, ξ) dG1(ξ), (PK)

R1(B
′, ξ) ≥ B′+ + ξ for all B′+ + ξ < B(ξ) (AC)

R0 ≥ 0, and Π0(y) ≤ Π1(x, y, R
′), for R′ ∈ {R0, R1, B}. (C)

Equation (2) is understood as follows. First, the firm collects the flow output

f(x, y) and pays the wage w. Then, with probability δ(x, y) the match separates, in

which case the firm recovers a vacancy in the next period, whose value is Π0(y). With

probability δ(x, y)λ1, the worker draws a firm bidding B′ from F0 and a preference
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shock ξ from G1. The firm chooses the bid B(ξ) to submit to the auction for each

of these encounters and the worker-surplus R1(B
′, ξ) to deliver when it retains the

worker. Finally, it chooses R0 for the case where no external contact is made. Each

of these choices is conditional on the state (x, y, R).

When making these choices, the firm is subject to the promise-keeping constraint

(PK), which states that the value to the worker of the implemented contract should

be equal to the promised value W0(x) + R. The worker collects the flow utility

u(w)− c(x, y). Then, with probability δ(x, y) the worker is laid off, in which case the

worker obtains zero surplus in the next period. With probability δ(x, y)λ1 the worker

is neither laid off nor poached and continues with R0. With probability δ(x, y)λ1, the

worker is contacted by a firm with bid B′ drawn from F0 and ξ drawn from G1. If

B(ξ) ≥ B′+ + ξ the incumbent wins the auction and pays R1(B
′, ξ), which should be

at least equal to the value B′++ξ returned by the mechanism (AC); If B(ξ) < B′++ξ

the worker moves either to the poacher (for a worker surplus equal to max{B(ξ), ξ})
or to unemployment (for a worker surplus ξ). Here, we assume that the poacher

pays what is required by the mechanism. Finally, (C) represents the participation

constraint of the worker, the limited commitment of the firm, and the credibility of

the bid.

Theorem 1. Assume that the utility function u is bounded, twice continuously dif-

ferentiable, strictly increasing, concave and has bounded non-zero first and second

derivatives.

1. The profit value Π1(x, y, R) is bounded, continuous, strictly decreasing and strictly

concave in R and differentiable almost everywehere.

2. It is a weakly dominant strategy to bid B(ξ)=S(x, y), where Π1(x, y, S(x, y))=Π0(y).

3. The optimal contract is such that the chosen wage w(x, y, R) solves

1

u′(w)
= −∂Π1(x, y, R)

∂R
,

and the optimal continuation values are R0 = R and R1(B
′, ξ) = max {B′+ + ξ, R},

for B′+ + ξ ≤ S(x, y) .

Firms have a reservation value S(x, y) that is, the contract surplus that produces

minimal profit Π0(y). The incumbent firm is truthful and bids exactly its reservation

value. It will offer a constant value to the worker over time until a meeting with
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an outside firm requires raising the value to retain the worker. The wage remains

constant in the absence of an outside offer and increases whenever it is necessary to

counter an outside offer. Following a similar argument, truthfulness is also optimal

for the poaching firms.

The annuity value for a firm with a vacancy of type y′ is:

rΠ0(y)= max
B0(x,ξ),B1(x,ξ)

λ0L0

V

∫∫
1{B0(x,ξ)+ξ>0} [Π1(x, y,−ξ)−Π0(y)]

ℓ0(x)

L0

dG0(ξ) dx

+ λ1

∫∫∫
1{B1(x,ξ)+ξ>B′} [Π1(x, y, B

′ − ξ)−Π0(y)] dF1(B
′, x|ξ) dG1(ξ). (3)

F1(x,B
′|ξ) is the distribution of workers and retention bids conditional on the mobility

shock. When the worker is unemployed, the implicit retention bid B′ will be 0.

When the worker is employed, the firm is faced with a distribution of retention bids

coming from the cross-sectional distribution of employed workers, combined with the

reporting strategy of each of these firms. The vacant firm chooses the values to report

to the auction, denoted B0(x, ξ) and B1(x, ξ). We take the minimum value constraint

from the auction as the promised value at the start of the match since it satisfies

the worker’s participation constraint and, unlike for the incumbent firm, there is no

preexisting promised value. Whenever the firm wins an auction, it receives a capital

gain of Π1(x, y, R)− Π0(y).

The value of unemployment. We assume that employers have full monopsony

power when they meet an unemployed worker, which in our auction mechanism is

equivalent to being with a firm with zero surplus. When an unemployed worker of

type x meets a vacancy of type y, it draws a mobility cost shock ξ from G0 with

negative support. Employers must compensate the worker for this cost in order to

hire. There are two possible cases. If S(x, y) + ξ > 0, which means S(x, y) > 0, the

match is viable. The firm hires the worker, paying −ξ to compensate for the cost of

mobility. The worker receives a surplus of zero in total. If S(s, y) + ξ ≤ 0 no offer

is made, the worker remains unemployed and also receives zero surplus. The annuity

value of unemployment to a type-x worker is then simply:

rW0(x) = (1 + r)b(x). (4)
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1.5 Equilibrium
In a stationary truth-telling equilibrium the flows out of and into ℓ1(x, y) are equal:

ℓ1(x, y)

(
δ(x, y) + δ(x, y)λ1

∫
G1

(
S(x, y)−S(x, y′)

)
v(y′) dy′

)
(5)

= λ0ℓ0(x)
v(y)

V
G0(−S(x, y)) + λ1

v(y)

V

∫
G1

(
S(x, y′)−S(x, y)

)
δ(x, y)ℓ1(x, y

′) dy′.

With truth-telling the distribution of retention bids faced by firms are given by:

F0(B
′|x, ξ) =

∫
1{S(x,y′)≤B′}

v(y′)

V
dy′,

F1(B
′, x|ξ) =

∫
1{S(x,y′)≤B′}δ(x, y

′)
ℓ1(x, y

′)

L1

dy′, (6)

which simply states that incumbent firms draw outside bids from the cross-section of

vacancies, vacancies draw from the cross-section of employed workers, and all firms

bid truthfully.

Definition 2. A stationary search equilibrium with sequential auctions is charac-

terized by meeting probabilities λ0 and λ1; employment measure ℓ1(x, y); bid dis-

tributions F0(B
′|ξ, x), F1(B

′|ξ, x); firm value functions Π0(y),Π1(x, y, R) and their

respective policies such that:

1. The meeting probabilities λ0, λ1 are consistent with the meeting technology (1).

2. Taking F0, F1 as given, Π1(x, y, R) and Π0(y) solve equations (2) and (3), which

take into account the mobility decisions of the workers.

3. The policies of Π1(x, y, R) are Π0(y) are truth-telling: for firm y employing

worker x, B(ξ) = S(x, y) and for vacancy y, B0(x, ξ) = B1(x, ξ) = S(x, y).

4. ℓ1(x, y) satisfies (5) and F0(B
′|ξ, x), F1(B

′|ξ, x) are generated by (6).

2 Properties of the equilibrium
In this section, we present properties of the model that will be useful for identification

and estimation in Sections 3 and 4. (See the online appendix B.2 for additional

details.)

Equilibrium wage equation. The value function for an employed worker can be

inverted at the equilibrium to obtain a wage equation in terms of current surplus R
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and maximum surplus S(x, y):

u(w(x, y, R)) = c(x, y) +
r + δ(x, y)

1 + r
R +

r

1 + r
W0(x)

− λ1δ(x, y)

1 + r

∫ [∫ S(x,y)−S(x,y′)

R−S(x,y′)

(S(x, y′) + ξ −R) g(ξ) dξ

+

∫ ∞

S(x,y)−S(x,y′)

(max{ξ, S(x, y)} −R) g(ξ) dξ

]
v(y′)

V
dy′. (7)

The wage is increasing in promised surplus R. For a given R, the wage increases in

the disutility of labor net of amenities c(x, y) and decreases in the maximum surplus

of the worker S(x, y). There are compensating differentials for the current c(x, y)

(Rosen, 1986) and for the extent of the potential wage growth (Postel-Vinay and

Robin, 2002).

Surplus equation. Since Π1(x, y, S) = Π0(y), we can deduce that the maximum

wage in an (x, y) match is

w(x, y) = w(x, y, S(x, y)) = f(x, y)− r

1 + r
Π0(y), (8)

We also know that at this point the worker is receiving maximum surplus, and we

can substitute equation (8) and R = S(x, y) into the wage equation (7) to obtain the

following equation for the maximum worker surplus S(x, y):

(r + δ(x, y))S(x, y) = (1 + r) [u(w(x, y))− c(x, y)]

− rW0(x) + λ1δ(x, y)

∫ ∞

S(x,y)

G1(ξ) dξ. (9)

The maximum worker surplus accumulates the usual annuity comprising the flow

utility (1 + r) [u(w(x, y))− c(x, y)] minus the unemployment annuity rW0(x). The

extra term is the expected value of max {ξ − S(x, y), 0}. If the mobility shock ξ is

greater than the current surplus S(x, y), the worker’s option value is ξ and not the

incumbent’s reservation value S(x, y).

We will also call S(x, y) the match surplus. This is a slight misuse of language, as

the term “match surplus” usually refers to the total production of a match minus the

sum of what the various parties can produce on their own. This definition naturally

arises in transferable utility models (for example, Lise et al., 2016). Here, there is no

such definition of the surplus of a match that is independent of the way it is shared.
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Utility is imperfectly transferable because firms’ valuations are expressed in units of

production (cash flow minus wage bill), whereas workers value wages through a utility

function, so their job valuations are expressed in units of utility.

Firm profits and the value of a vacancy. Making use of Theorem 1 we can

express firm profits (2) in terms of equilibrium wages:

Π1(x, y, R) = Π0(y) +

∫ S(x,y)

R

dR′

u′(w(x, y, R′))
. (10)

Similarly, we can express the value of a vacancy (3) as a function of the equilibrium

wage:

rΠ0(y) =
λ0L0

V

∫
S(x,y)>0

∫ 0

−S(x,y)

G0(ξ)

u′(w(x, y,−ξ))

ℓ0(x)

L0

dξ dx

+
λ1L1

V

∫∫
S(x,y)>0

∫ 0

−S(x,y)

G1(ξ + S(x, y′))

u′(w(x, y,−ξ))
δ(x, y)

ℓ1(x, y
′)

L1

dξ dx dy′. (11)

In the next Section we will put these equilibrium properties to use for identification.

3 Identification
The model we have specified is particularly rich because it allows for the possibility

of sorting in an environment with frictions, and it includes amenities and mobility

shocks that can, in principle, allow for a complex structure of transitions and wage

growth. But the value of such a rich specification hangs on our ability to identify the

key components without relying on assumed parametric forms. This will define the

empirical content of the model. We now discuss the identifiability of our model.

Throughout, we assume that the discount rate r and the flow utility function

u(w) are known. The deep parameters/functions of the model for which we need to

show identification are the production function f(x, y), the disutility (net of amenity)

function c(x, y), the utility of unemployment b(x), the separation rate δ(x, y), the

population measures of skill ℓ(x) and job productivity n(y), the distribution of the

mobility shocks for the unemployed G0(·) and the employed G1(·) and parameters

λ0, λ1.
4

4Note that the matching function M(L, V ) is only identifiable with aggregate (over time or
space) variation of the unemployed and the vacancies. However, this function is only required
for counterfactual simulations, and we can borrow it from the literature. Therefore, we focus on
identifying λ1 and λ0.
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To recover the structural parameters of the model, we assume the existence of

matched employer-employee data over a finite number of periods T . Each individual i

is associated with latent heterogeneity xi and each employer j is associated with latent

heterogeneity yj, but both are unobserved by the econometrician. For each period t

and individual i, we observe the employment status eit ∈ {U,E} and, if employed,

the wage compensation wit and the current employer jit. We denote the joint density

of these observables by P[ji1, wi1, ei1, ..., jiT , wiT , eiT ], which can be obtained directly

from the data. We also assume that a measure of the aggregate labor share is available.

We denote mit = EE if the worker remains employed with the same firm between

t and t + 1, mit = EU if the worker separates from a job into unemployment, and

mit = JJ if the worker changes employer. We denote mit = UU if the worker is

unemployed in both t and t+1 andmit = UE if the worker moves from unemployment

to employment.

3.1 Step 1: Distributions, transition probabilities, and wages
Assuming finite worker and firm latent types, we build on the results in Bonhomme,

Lamadon, and Manresa (2019, BLM) on the identification of nonlinear Markovian

wage equations and distributions with two-sided heterogeneity. To apply BLM’s

framework, we first establish the following result.

Lemma 1. The sequential auction model of Section 1 produces a Markovian law of

motion for wages and employment conditional on worker type, i.e.:

P[wt+1, yt+1,mt+1|x,wt, yt,mt,Ωt−1] = P[wt+1, yt+1,mt+1|x,wt, yt,mt]

where Ωt = {wτ , yτ ,mτ}τ=1,...,t is the information set in periods 1 to t.

This step allows us to estimate a flexible reduced-form model of wages and mobil-

ity that nests the structural model. This will be one of the rare cases where indirect

inference can be proven to be consistent. Usually, the identification of a structural

model is based on intuitive considerations on how a moment should help identify a

parameter. However, the injectivity of the binding function that links auxiliary pa-

rameters to structural parameters is rarely formally proven. Here, we start by proving

that our model belongs to a large class of latent Markov models. In a second step,

we will prove formally the identification of structural parameters from the auxiliary

model. Very importantly, the identification of the distribution of latent worker and
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firm types will also be achieved in the first step. This is where usual moment-based

estimators fail to produce convincing estimators of unobserved heterogeneity, as it is

hard to separately identify different latent groups using aggregate moments. Hage-

dorn et al. (2017) were the first to propose an identification and estimation procedure

that shares some of these ideas.

Assuming a finite number of worker types K, adapting BLM’s method, we show

that the cross-sectional distribution P[x, y, et = E] = ℓ1(x, y), the moving probabil-

ities P[mt = m |x, yt = y, et = E] := pm(x, y) for m = EU,EE, JJ, the transition

probability P[yt+1,mt = JJ |x, yt] := pJJ(yt+1|x, yt), the law of motion for within-job

wages P[wt+1 ≤ w |wt, x, yt,mt = EE] := FEE(w|x, yt, wt) and the distribution of

wages after a move P[wt+1 ≤ w | x, yt+1, yt,mt = JJ] := FJJ(w|x, yt, yt+1) are non-

parametrically identified from data on movers with two periods before and after the

move.

We include unemployment as an extra state, allowing us to measure transition

rates for each type of worker into and out of employment. We then recover the

distribution among the unemployed P[x, et = U] = ℓ0(x), the probability of exiting

unemployment conditional on type P[mt = UE |x, et = U] := pUE(x), the distribution

of the destination firm conditional on type P[yt+1 |x,mt = UE], and the wage condi-

tional on making that move P[wt+1 ≤ w|x, yt+1,mt = UE] := FUE(w|x, yt+1) (see the

online appendix B.4 for complete details).

From this point on, we treat each of these distributions as known.

3.2 Step 2: Surpluses and wage functions
Let us denote by R(x, y, w) the inverse of the wage function R 7→ w(x, y, R) for any

given match type (x, y). We call it the worker surplus function. First, we prove the

following identification result.

Lemma 2. For each match (x, y), we identify its viability ϕ(x, y) = 1{S(x, y) > 0},
and for each viable match (x, y), we identify the match surplus S(x, y), the worker

surplus function R(x, y, w) and the equilibrium wage function w(x, y, R) from the

following observables:

• the match type distribution P [x, yt = y, et = E ] = ℓ1(x, y),

• the probability of within-job wage increase,

P [mt = EE, wt+1 > w|x, yt = y, wt = w, et = E ] = FEE(w|x, y, w),
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• the mobility probabilities P[mt = m|x, yt = y, et = E] = pm(x, y), mt = EU, JJ.

Viability ϕ(x, y) is directly identified from the fact that the matching sets are

observed from the knowledge of ℓ1(x, y) from the previous step: ϕ(x, y) = 1 if and

only if ℓ1(x, y) > 0.

The link between the distributions identified in Step 1 and the surplus functions

is more subtle and is an important result. We deduce from equation (7) that differ-

entiating the worker surplus R(x, y, w) with respect to the wage w yields:

∂R(x, y, w)

∂w
=

(1 + r)u′(w)

r + δ(x, y) + λ1δ(x, y)
∫
G1 [R(x, y, w)− S(x, y′)+] v(y

′)
V

dy′
, (12)

where the denominator is equal to r plus the probability of any change to the current

state, which includes the probability of moving to unemployment, the probability of

changing jobs, and the probability of staying but receiving a wage increase:

δ(x, y) + λ1δ(x, y)

∫
G1

[
R(x, y, w)− S(x, y′)+

] v(y′)
V

dy′

= P[mt = EU|x, yt = y, et = E] + P[mt = JJ|x, yt = y, et = E]

+ P[mt = EE, wt+1 > w|x, yt = y, wt = w, et = E].

The probability of any of these changes conditional on a match (x, y) is known from

Step 1 and therefore is identified.

The minimum wage in an (x, y) match is associated with a contract that yields

zero surplus: R(x, y, w(x, y)) = 0. We therefore obtain R(x, y, w) by integrating (12)

for wages w in the support [w(x, y), w(x, y)]:

R(x, y, w) =

∫ w

0

∂R(x, y, w′)

∂w
dw′.

The match surplus follows as S(x, y) = R(x, y, w(x, y)) (the maximum surplus gives

the maximum wage). Lastly, w(x, y, R) is identified as the inverse of R(x, y, w).

It is important to note that equation (12) is quite general. For example, it will

also be valid in a model without mobility shocks. The key property of the model that

makes this possible is the fact that firms offer insurance when not matching outside

offers, together with the fact that outside offers are independent of the current state.

This implies that the rate at which the value increases is related to the probability

that a change in state occurs.
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3.3 Step 3: Mobility shock and vacancy distribution
Assumption 1. We assume the following about the shock distributions:

(a) G1 has zero median: G1(0) = 1/2.

(b) G1 belongs to a parametric family G1 = {G1(ξ; θ)}θ, where θ is identified from

observations in any bounded interval.

(c) The distribution G0 has support in (−∞; 0].

(d) G0 belongs to a parametric family G0 = {G0(ξ; θ)}θ, where θ is identified from

observations in any bounded interval.

Assumption 1(a) imposes a normalization that allows separating λ1 from G1(ξ).

It only assumes that the distribution of the shock has a median of 0, i.e., it is cen-

tered. Assumption 1(c) is repeating the support restriction for G0(ξ) that rules out

positive preference shocks when coming out of unemployment. The assumptions 1(b)

and 1(d) are restrictions on the families of distributions that we can consider. This

is an extrapolation assumption. It covers a large set of functions, for example, the

family could include both Normal and Logistic, or it could include any polynomial

transformation of ξ inside a Logit.

Lemma 3. Define S = maxx,y S(x, y),

1. Under Assumption 1(a), G1(ξ) is nonparametrically identified on ξ ∈ [−S, 0]

from FJJ(w|x, y, y′) and knowledge of R(x, y, w) and S(x, y).

2. In addition, with Assumption 1(b), G1(ξ) is identified everywhere.

This lemma establishes that we can learn very flexibly about G1(ξ). The result comes

from the following characterization of job-to-job wages. Conditional on a move from

y to y′, the only uncertainty is about the mobility shock ξ. We know that the new

match surplus S ′ ≡ S(x, y′) > 0 and that S ′ + ξ > S ≡ S(x, y). The new contract

has value R′ = max {S − ξ, 0} and the workers also collect the mobility shock. The

new wage is given by w(x, y′, R′).

Hence, for the minimum transition wage w = w(x, y′, 0) := w(x, y′),

FJJ(w|x, y, y′) =
G1 [S(x, y)]

G1 [S(x, y)− S(x, y′)]
,

and, for any positive wage w ∈ ]w(x, y), w(x, y)[ = w(x, y′, R′) with 0 < R′ =

R(x, y′, w) < S ′,
FJJ(w|x, y, y′) =

G1 [S(x, y)−R(x, y′, w)]

G1 [S(x, y)− S(x, y′)]
.
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Intuitively, for realized matches, the shock moves the compensation that a poacher

has to offer the new hire. The distribution of starting wages conditional on a move

traces out the distribution of the preference shock. We have already identified

FJJ(w|x, y, y′) in Step 1 and R(x, y, w) ∈ [0, S(x, y)] from Step 2. We vary S(x, y)−
R(x, y′, w) and S(x, y)− S(x, y′), and make use of the centering G1(0) = 1/2. When

y = y′, we identify G1 [S(x, y)−R(x, y, w)] continuously for all R(x, y, w) between

0 and S(x, y). When S(x, y) < S(x, y′) we identify G1 [S(x, y)− S(x, y′)] when

R(x, y′, w) = S(x, y). Identification of G1 below 0 is based on assumptions on the

support of firm types. If n(y) is a discrete distribution, then the identification of G1

below 0 occurs only at the points S − S ′.

Lemma 4. The probability of separation δ(x, y), the rate of meeting on the job λ1

and the density of vacancies v(y′)/V are identified from pJJ(y
′|x, y), pEU(x, y) and

G1(ξ).

This result comes from the expression for the transition pJJ(y
′|x, y), that relates

the probability of moving to the difference in surpluses in the distribution of the

preference shock given by:

pJJ(y
′|x, y) = δ(x, y)λ1

v(y′)

V
G1(S(x, y)− S(x, y′)). (13)

Since this is observed for all (x, y, y′) over viable matches and G1(ξ) and S(x, y) are

known, we can use relative flows pJJ(y
′
1|x, y)/pJJ(y′2|x, y) to recover v(y′)/V .

We note here that equation (13) allows us to identify G1 on a larger support than

Lemma 4 since we can use transitions where S(x, y)−S(x, y′) > 0. This allows for

relaxation of the use of Assumption 1(b). Combining this with pEU(x, y), the layoff

rate δ(x, y) is identified by the conditional probability of separation implied by the

model.

Lemma 5. Given pUE(x, y), FUE(w, x, y) and v(y)/V ,

1. λ0G0(ξ) is non parametrically identified on [−S̄, 0],

2. With Assumption 1(d) it is identified everywhere.

This result comes from the expression of the flow out of unemployment together with

the wage conditional on coming out of unemployment. Importantly, we can learn

G0(ξ) very flexibly and, in particular, for any counterfactual where the surpluses do

not move outside of S̄, we do not need the extrapolation Assumption 1(d).
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3.4 Step 4: Production function and amenities.
Lemma 6. Under Assumption 1, and knowledge of λ1G1(ξ), λ0G0(ξ), S(x, y) and

v(y)/V then f(x, y), c̃(x, y) = c(x, y)+b(x), V and n(y) are identified from knowledge

of the aggregate labor share.

Establishing the identification of f(x, y) leverages important properties of the

model. First, we can express the output of the match using the equilibrium wage

w(x, y, R), the surplus S(x, y), and the value of a vacancy Π0(y):

f(x, y) = w(x, y, S(x, y)) +
r

1 + r
Π0(y), (14)

where the only unknown part is Π0(y). Using equation (11) we see that Π0(y) is

only unknown up to the total number of vacancies V .5 Hence, the match output is

known up to one coefficient. Integrating the output of the match against the already

identified distribution of matches ℓ1(x, y) expresses V as a function of the labor share

and known quantities:

labor share =
E [wit]

E
[
w(xi, yj(i,t), S(xi, yj(i,t))) +

1
V

rV
1+r

Π0(y)
] . (15)

This is a substantive result, since we did not assume transferable utility where

knowledge of S(x, y) would have directly provided us with Π0(y) up to scale. Here,

instead, we used the property of the optimal contract that relates the Pareto frontier

to the marginal utility of the wage, as captured in the equation (11).

The final part of Lemma 6 shows the identification of the disutility term c̃(x, y) =

c(x, y) + b(x). Without external information on the value of unemployment, we can

only treat unemployment as the external good and measure each job type relative to

this option. This means that we identify c̃(x, y) = c(x, y) + b(x), which captures the

disutility of a particular job, net of any amenities, and net of the forgone leisure and

home production. We can identify this from the surplus equation (9) where everything

is known other than the term c̃(x, y). Thus, c̃(x, y) is identified as the component of

the maximum flow surplus that is not already accounted for by the maximum wage

and the expected value of future mobility shocks.

5Equation (11) equates the value of a vacancy with the expected gain from matching. If an
additional period of vacancy incurred a type specific cost k(y), this vacancy cost would not be
identifiable.
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Taking stock. In this section we have laid out in a transparent way the iden-

tification of the model structure. The surplus of any (x, y) match is identified by

aggregating the marginal utility of the wages observed in the match, weighted us-

ing the expected duration in the state. The expected duration encodes the revealed

preference information of the workers. The production function is identified by the

maximum wage paid in an (x, y) match plus the opportunity cost of a vacancy for a

firm. The disutility of labor net of amenities term is identified by the discrepancy be-

tween the surplus and the maximum wage in an (x, y) match. In other words, c̃(x, y)

is needed to rationalize any systematic differences in the firm rankings of workers

based on mobility-weighted wages compared to wage-based ranking alone. Finally,

the distributions of mobility shocks are identified by idiosyncratic worker mobility

that is inconsistent with the systematic rankings implied by the surplus, along with

the distribution of wages at employment transitions.

4 Data, Estimation and Results
Before we describe the data, we give an overview of our estimation procedure. While

we build on the identification argument, estimation requires us to make some functional-

form assumption. In particular, we will assume that G1(ξ) is a logistic and G0(ξ) is

a logistic truncated above by zero. For Step 1, we specify a flexible discrete het-

erogeneity model directly following BLM. Next, we make direct use of the logistic

specification to estimate surpluses and mobility parameters up to knowledge of the

parameters of G1(ξ) and G0(ξ) from the mover probabilities using Equation (13). We

finally use these scaled surpluses together with the wage moments of FEE, FUE and

FJJ to estimate the remaining parameters. Importantly, the production function and

disutility remain completely unrestricted.

Data We use matched employer-employee data from Sweden. The data comprise

annual tax records for the universe of jobs in Sweden. Each record provides informa-

tion on the start and end month of the spell in each year, an employer identifier, an

employee identifier, and the total compensation for the year.

Using the monthly spell level information, we construct transition rates at the

quarterly frequency and associated monthly earning equivalent based on the number

of months worked and total compensation. We track workers in and out of recorded

unemployment and derive their employment state accordingly. We use five years of
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data from 2000 to 2004, and included all workers under the age of 50. See the online

appendix B.5 for additional details.

Estimation of the reduced-form model We start by classifying the firms follow-

ing BLM. We group firms based on the empirical CDF of wages in the cross section.

Given this classification, we estimate the distribution of types and wages, as well as

the probability of moving using maximum likelihood.

We specify flexible probability models for transitions out of unemployment, wages

out of unemployment, wages while on the job, the probability of moving to a new

firm, and the wage conditional on a move. As in the rest of the paper, we use x to

denote worker types and y to denote firm types and we focus on the case with discrete

types.

We continue to denote ℓ0(x) as the probability that a worker is unemployed and

of type x, and ℓ1(x, y) as the probability that a worker is of type x and matched with

a firm of type y. We leave these probabilities completely unrestricted. We also leave

unrestricted the probability of leaving unemployment, the probability for a worker of

type x to join a firm of type y, which we denote pUE(x, y). Finally, we specify the

hiring wage for a worker of type x who comes out of unemployment and joins the firm

y as a log-normal with unrestricted mean µUE(x, y) and variance σUE(x, y). Hence

the probability of observing a wage w for a worker joining firm y in the data is given

by:
P[yt=y, wt=w |x,mt−1=UE] = pUE(x, y)N

(
w, µUE(x, y), σUE(x, y)

)
where N is the density of the log-normal distribution. The evolution of wages on

the job is specified as an auto-regressive process with (x, y) specific intercept and a

common auto-regressive coefficient:

P[wt |x, y, wt−1,mt−1=EE] = N
(
wt − γwt−1, µEE(x, y), σEE(x, y)

)
.

The probability of a transition from job to job is left unrestricted as a function of

x, y as is the type of destination firm y′, and is denoted as pJJ(x, y, y
′). Importantly,

following the model presented in the previous section, the wage conditional on move

is a distribution which depends only on the worker and firm types, but conditional

on these types is independent of the wage before the move. We then use a log-normal

distribution and let its mean and variance be unrestricted functions of x, y, y′.

We jointly estimate the allocations ℓ0(x) and ℓ1(x, y), the mobility parameters
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Figure 1: Type distributions and conditional transitions (Step 1 estimates)

Notes: Firm and worker types are ordered by mean wages.

pUE(x, y), pJJ(x, y, y
′), and δ(x, y), and the parameters of the wage equation µUE(x, y),

σUE(x, y), µEE(x, y), σEE(x, y), µJJ(x, y, y
′), σJJ(x, y, y

′), γ using maximum likelihood.

Given nx worker types and ny firm types, this amounts to a number of parameters of

the order of 3nx · n2
y. In estimation, we focus on nx = 5 and ny = 10.

Reduced Form Results From the Step 1 estimates, we can already see clear

differences between the outcomes of different types of workers, indicating a pattern of

sorting of workers between firms. In Figure 1 we show most of the estimated objects

from Step 1. In panel (a) we plot, for each worker type x, the mean log wage when

matched to a firm type y. For the purposes of the figures, we order the worker types
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by their mean wage and the firm types by the mean wage they pay. This ordering

appears sensible and produces a clear ordering of firms where all workers are more or

less paid more as we move to higher firm types. The figure also reveals a relatively

stable ordering of workers, with the exception of the lowest worker type by the top

two firm types, where the data are sparse.

In panel (b), we plot the composition of worker types employed in each type of

firm, and in panel (c), we plot the share of total employment of each type of firm in

the cross section. The cross-sectional distribution shows a clear and strong pattern

of separating high-paid workers into high-paying firms. In panels (d), (e), and (f), we

plot the estimated proportions of workers by type, the type-specific unemployment

rate, and the type-specific job-finding rate from unemployment. In panels (g), (h),

and (i), we plot the probability of moving from employment to unemployment, the

probability of changing job, and the probability of moving to a higher firm type

conditional on changing job.

The estimates in Step 1 produce an interpretable picture of what distinguishes

the worker types from each other. Take, for example, the lowest-type workers, who

make up about a quarter of the population. Not only do they have the lowest av-

erage earnings when employed, they also have the highest unemployment rate (over

40%), which is generated by the lowest probability of moving from unemployment

to employment, combined with a probability of separating into unemployment from

any type of firm that is about 10 times higher than the average of the other types of

workers. These workers also have high job-to-job transition probabilities, but have

the lowest probability of moving to a higher paying firm conditional on changing jobs.

On the other hand, workers with the highest type, about 7% of the population, have

the highest wages when employed, unemployment rates below 5%, a high probabil-

ity of moving from unemployment to employment and a low probability of separating

from employment to unemployment. They also have a high job-to-job transition rate,

but when they change jobs, they have the highest probability of moving to a higher

paying firm.

To summarize, it is clear from the Step 1 estimates that worker types differ across

important wage and mobility dimensions, and that these differences generate a dis-

tribution of worker types across firm types that is strongly positively sorted.6

6In Online Appendix Figure 6 we plot the stationary distribution of worker types across firm
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Figure 2: Surplus and Firm Rank (Step 2)
Notes: We plot mean the surplus S(x, y) and the comparison of firm rankings based on wages and
surplus. Estimates are from step 2.

Estimation of surpluses, vacancy rates, and meeting rates. We choose simple

parametric families for G1 and G0:

G1(ξ) =
1

1 + e−ρ1ξ
, G0(ξ) =

2

1 + e−ρ0 min{0,ξ} .

We assume that the preference shocks are distributed according to a logistic distri-

bution for G1 and a logistic truncated above at 0 for G0. We allow each to have its

own scale parameter, ρ1 and ρ0. For each (ρ0, ρ1), we estimate surpluses, vacancies

v(y)/V and λ0 and λ1 to maximize the likelihood of the transitions estimated in the

reduced form model (see Online Appendix B.6 for the likelihood). We constrain the

surplus to be positive whenever ℓ1(x, y) > 0 as implied by the theory. Given such

surplus, we compute the mean full-year employment wage growth of stayers, as well

as the difference in full-time employment wages after a move from unemployment

versus from another firm, as captured in the following moments:

m1 =E [logwt − logwt−4| st=st−4=1, mt−4=EE] ,

m2 =E [E [logwt|x, y, st=1,mt−4 = JJ]− E [logwt|x, y, st=1,mt−4 = UE]] ,

types implied by the model, along with the cross-sectional distribution in the data estimated in Step
1. The distributions align remarkably well, which supports the restriction of attention to the steady
state of the model.
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where t is quarter and st=1[mt−1=mt−2=mt−3=EE] denotes a full time employment

year. In the data m̂1 = 0.01 and m̂2 = 0.083. The procedure matches them exactly.

We obtain an estimate of ρ̂1 = 0.42 and ρ̂0 = 0.07. This suggests the presence of a

larger variance in cost when leaving unemployment than when moving from another

firm.

In Figure 2(a) we plot the estimated surplus S(x, y). We note several interesting

patterns in the surplus implied by transitions between firm types. First, while mean

wages suggest an apparent common ranking of firms by workers, mobility patterns

do not. In Figure 2(b) we plot the highest paying firm and the highest surplus firm

by worker type. Although there is unanimous agreement among worker types about

which firms are high-pay, there is complete disagreement by worker type as to which

firms provide high surplus. These results accord well with the empirical findings of

Lentz et al. (2023) that inferences about sorting using only information on wages are

very different from inferences that use information on mobility patterns. In the next

sections, we turn to estimating the underlying structure that provides a fully coherent

interpretation of these results.

Disutility of labor and the production function. We use equation (7) and iden-

tified quantities to obtain an estimate of the type-specific disutility of labor c̃(x, y).

We then have all the elements to construct Π0(y) using the equation (11) up to one

scale value, which is the total number of vacancies. We obtain this scale value by

matching a labor share of 0.75 using equation (15). We then use equation (14) to

recover the production function f(x, y).

We plot the estimates of c̃(x, y) and the log of f(x, y) in Figure 3. There are

several patterns of note here. First, the average disutility of work is monotonically

increasing in worker type; higher worker types have a higher opportunity cost of

work. For the lowest worker types, the disutility of labor is increasing in the firm

type, indicating that while these firms pay well, they are unattractive for low-type

workers on their non-wage dimensions. This is in contrast to the highest worker

type, where the disutility of labor is high, but effectively independent of the firm

type. Finally, the estimates reveal striking monotonicity in both dimensions x and

y (with the exception of the lowest worker type paired with the highest firm, where

there is little data). Turning to the estimates of the production function, we note

the striking monotonicity in both x and y, again with the exception of the pairing
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Figure 3: Disutility net of amenities and production function (Steps 4 and 5)

of the lowest worker type and the highest firm type, where very few matches occur.

The monotonicity present in the estimates of c̃(x, y) and f(x, y) supports our choice

of ordering workers and firms according to the mean wages in Figure 1(a).

5 Wage and value decomposition
In this section, we use the estimated model to decompose the variance of log wages, we

assess the quantitative importance of mobility shocks and interpret well-documented

empirical regularities through the structure of the model.

Wage variance decomposition and compensating differentials. We begin

our decomposition of the variance of log wages with the standard within and between

worker decomposition:

V ar(logw)︸ ︷︷ ︸
total

= E[V ar(logw|x)]︸ ︷︷ ︸
within worker: 31%

+V ar(E[logw|x])︸ ︷︷ ︸
between worker: 69%

. (16)

Turning first to the within worker (within x-type) term, we decompose this into

interpretable sources. For a given worker, the wage variation is generated from three

different sources. The first is the variation in wages due to compensating differentials.

In the face of non-wage differences between jobs, different firms must pay the same

worker different wages to deliver the same value (Rosen, 1986). Labor market frictions

allow for two additional sources of variation. The presence of search frictions allows

for the coexistence of firms that offer different values to the same worker (Mortensen,
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2003). The effect of search frictions is amplified by sequential auctions, since this

allows a firm to offer the same worker a different value over time as their outside

option evolves. This is the variation within a worker-firm match that is induced by

the sequential auction (Postel-Vinay and Robin, 2002). We will refer to these three

sources of within worker-type variation as compensating differentials, search frictions,

and sequential auctions; or Rosen, Mortensen, and PVR sources for short.7

For a fixed worker type x, we decompose wages first into the variation within and

between a fixed surplus value R, and second, we decompose the variation between

R into the variation between and within firms. To simplify notation we first define

µR = E[logw|R, x] and write:

V ar(logw|x)︸ ︷︷ ︸
within worker

= E[V ar(logw|R, x)|x]︸ ︷︷ ︸
within R

+V ar(µR|x)︸ ︷︷ ︸
between R

(17)

= E[V ar(E[logw|R, y, x]|, x)|x]︸ ︷︷ ︸
(a) Rosen

+V ar(E(µR|y, x)|x)︸ ︷︷ ︸
(b) Mortensen

+E[V ar [µR|y, x] |x]︸ ︷︷ ︸
(c) PVR

.

The first term captures that fact that different firms pay different wages to deliver

the same present value to a given worker; the Rosen compensating differential contri-

bution. The second term captures the variance between employers in average wage

net of the compensating differential. In other words, this captures the fact that some

firms can offer larger values than others (including differences due to worker prefer-

ences, match separation rate, and the productivity of the firm); the Mortensen search

friction contribution. The final term captures the wage variation for a given worker,

within a given firm, net of the compensating differential; the PVR sequential auction

contribution.

We present this decomposition in Figure 4 for each worker type separately, as

well as for the average over the worker types. Each bar presents the share of the

wage variance within the worker that is attributed to (a) Rosen compensating dif-

ferentials, (b) Mortensen frictions, and (c) sequential auctions of PVR. Looking first

at the average, the share of wage variation for a typical worker due to compensating

differentials is slightly below 50%. This is an important finding as it implies that

for the typical worker, half of the variation in wages we observe can be attributed

to compensating differentials that do not reflect utility differences. Second, there are

7Our labeling generalizes the one adopted by Sorkin (2018) to include the within match dispersion
resulting from the sequential auction between incumbent and poaching firms.
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Figure 4: Within worker wage variance contribution

Notes: We plot the three terms of the equation (17) for each type of worker and for the average
worker in the cross section. The bars represent the share of the variance within the worker accounted
for by (a) Rosen compensating differential, (b) Mortensen frictions, and (c) sequential auctions of
PVR. These are as a share of the within-worker variance, which amounts to 24% for the total
variance.

substantial differences between workers. At the bottom of the distribution, there is

substantially less variation in value compared to the variation in wages. About 55%

of the wage variation for the lowest group is the compensating differential and occurs

at a constant utility value. At the top, only 10% of the wage variation is due to com-

pensating differentials. High-paid workers face important utility differences between

employers and important within job wage dynamics resulting from the offer-counter

offer mechanism.

We next decompose the between-worker variance into the within- and the between-

firm variance:

V ar(E[logw|x])︸ ︷︷ ︸
between worker: 69%

= E[V ar(µx|y)]︸ ︷︷ ︸
within firm, between worker: 51%

+ V ar(E[µx|y])︸ ︷︷ ︸
between firm, sorting 18%

.

The first term, E[V ar(µx|y)], captures the average within-firm variance of average

worker values. This reflects the fact that even in the case where all firms are identical

and pay identical wages, firms will hire a distribution of workers, and each worker

has a different average market wage. The second term, V ar(E[µx|y]), is the between

firm variance in wages net of firm-specific pay policies. This is the contribution to

the total variance of wages associated with the fact that different firms hire workers

with different average market values. This speaks to the fact that different firms have
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different worker compositions and directly reflects the sorting of workers across firms.

In summary, most of the wage variance comes from differences between workers,

which represents 51% of the overall wage variation. The sorting of workers to firms

accounts for another 18% of the overall variance. The remaining variance occurs

within the worker type and can be split as 14% due to compensating differentials

at a fixed utility level, 3% resulting from different firms offering different values to

the same workers, and the remaining 14% resulting from sequential auctions. The

last two are the combined effect of market frictions, indicating that search frictions

account for 17% of wage variation for a typical worker, although this share varies

substantially between worker types.8

The quantitative role of the preference shock An important part of our frame-

work comes from the introduction of the preference shock. To quantify its role, we

conducted two simple exercises. First, using the model, we find that for 81% of the

meetings between employed workers and poaching firms, the mobility result would

be the same if the preference shock were zero. Second, to evaluate the importance

of the preference shocks for wage variation, we simulate the model, replacing each

preference shock with zero (the mean for outside offers). This simulation produces

wages that are solely determined by worker type, firm type, and poaching firm type,

rather than by a combination of types and preference shock. In this counterfactual,

focusing on employed workers who have received at least one offer, the wage variance

within (x, y) matches amounts to 86% of the baseline wage variance. In summary, the

model attributes 19% of job-to-job moves and 14% of wage variation within matches

to the preference shock.

The consequences of mobility Next, we use the structure of the model to com-

pute the average gain and loss associated with moves by worker type. We start by

reporting the change in the average wage of the employer in the first row of Table 1.

On average, worker types 1, 2, and 3 move to firms with lower average wages, while

worker types 4 and 5 move to firms with higher average wages. This confirms what

8An alternative to our decomposition would be to report the measures of worker/firm hetero-
geneity and sorting that come from a two way best linear predictor decomposition in the spirit
of AKM. Applying AKM to model simulated data, we find that the shares of wage dispersion are
worker fixed effect 53%, firm fixed effect 11%, covariance 20.5%, nonlinearities 1.7%, and residual
of 14.1%. While not directly comparable to our decomposition, the shares attributable to worker
heterogeneity and sorting (covariance) are strikingly similar.
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Table 1: Gains and losses upon moves

worker type 1 2 3 4 5 all

∆E[logw|y] -0.2% -1.4% -2.7% 2.6% 7.4% -0.1%
∆E[logw|x, y] -0.3% 0.2% -0.6% 0.8% 1.5% 0.1%
∆ log f(x, y) 1.2% 2.5% 2.6% 1.3% 1.8% 2.0%
∆c̃(x, y) -1.6% -1.1% -1.8% 0.1% -0.6% -1.1%

we reported in Figure 1(i) that low-type workers tend to move down the hierarchy

of firm type according to the average wage. This pattern continues to hold when we

condition on the match type. In the second row, we see that low-type workers tend to

move to firms that pay them less, and high-type workers tend to move to firms that

pay them more. Using the model, we can also look directly at the implied changes in

output and amenities associated with a job change. The patterns are quite different

here. On average, all types of workers move to jobs with higher productivity and

better amenities (lower disutility). Overall, the mobility from job to job generates a

2% gain in output. Similarly, moves tend to improve amenities, with an average gain

of 1.1%. Across types, we notice that the lowest-type workers appear to be improving

amenities relatively more than output after a move.

Empirical regularities through the lens of the model. We use the model to

provide a structural interpretation of several empirical regularities that have been

documented. We start with the shape of the job-mover event study from Card et al.

(2013). In Figure 5 we reproduce this study based on our estimated model.

We notice several important features. First, as typically documented, the movers

from the top to the bottom quartile experience an earnings loss that is not alleviated in

period 1. Sequential contracting provides a rationale for why workers might accept a

wage cut upon a move, expecting that they would later recover through outside offers.

In our model, however, compensating differentials arising from the c(x, y) function

can generate moves to higher value firms that actually pay permanently lower wages.

As seen in Figure 4, the compensating differentials account for approximately half of

the overall variance in the wage between workers. Second, the event study exhibits

the usual symmetry in wage changes between upward and downward moves. We note
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Figure 5: Event Study plot.
Notes: Figure a) reproduces the event study plot from Card et al. (2013), it plots yearly earnings
before and after a move for different firms, grouped by quartiles of earnings. Figure b) shows the fit
of the model for annual earnings before and after a move for all pairs of firm types.

that this is also consistent with the important role of compensating differentials.

A second empirical regularity is the fact that wages appear more or less log-

additive as presented in Figure 1(a) yet the surplus function shows that workers

rank firms very differently and Figure 1(b) shows a lot of sorting in equilibrium.

Without compensating differentials and our c(x, y), these patterns would be difficult

to reconcile. However, the surplus represents a combination of wage and amenity.

This means that the model can rationalize both the wages and the surplus by having

both f(x, y) and c(x, y). The combination of log-additive wages and strong sorting

leads to estimated dis-amenities of work that increase across firm types for the low

type workers to generate positive sorting.

A third empirical finding is that the firm in which a worker was employed before

a move does not have a strong effect on the wage after the move (Di Addario, Kline,

Saggio, and Sølvsten, 2023). This suggests that wages appear to be generated more

by wage posting than by sequential contracting. An important aspect in a model like

ours, where sorting is modeled structurally, is that the shape of the surplus will lead

to heterogeneous effects of the previous firms on different workers. This will tend to

muddle the average effect of the previous firm. Indeed, a linear additive formulation on

our simulated data finds little role for the previous employer. However, structurally,

there is indeed an effect.
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6 Conclusion
In this paper, we develop an equilibrium model of the labor market with hetero-

geneous workers and firm types, type-specific production and disutilities/amenities,

mobility preference shocks, and optimal contracting. We show that the model is non-

parametrically identified from a short panel of matched employer-employee data. We

find that for the lowest type workers, compensating differentials account for about

half of the within-worker wage variation, but less than 10% for the highest type of

worker. Finally, we use the structural model to interpret several empirical regularities

that, in the absence of the model, are difficult to reconcile.

The model is very amenable to conducting counterfactual policy experiments and

assessing the efficiency and distributional effects of, for example, changing the progres-

sivity of taxes, earned income tax credits, or changing minimum wages. We estimate

that compensating differentials for amenities play an important role in explaining

wage variation. Policy changes that affect the relative value of wages and amenities

will directly affect how workers value different jobs and will affect mobility patterns.
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A Appendix

A.1 Proof of Theorem 1: The optimal contract
In all the following, the outside options W0,Π0 are given. We will consider worker

values on a compact set, as a firm should never offer more than the present value of

output. We define S = [0,maxxy f(x, y)/r]. We also define the control spaces, that

is, R1 ∈ L∞(S× R) and B ∈ L∞(R). R0 ∈ S and w ∈ [w, w̄], supposed large enough

not to bind in firm choices. Finally, we give the firm the option to fire the worker by

choosing δ̃ ∈ [δ, 1], which is only useful away from the optimal solution (which will

always choose δ̃ = δ). We can define the following operator T that maps Π1(R) to

Π̂1(R) = T [Π1](R) as:

Π̂1(R) = sup
{w,R0,R1,B,δ̃}

{
f − w +

δ̃

1 + r
Π0 +

(1− δ̃)(1− λ1)

1 + r
Π1(R0)+ (18)

(1−δ̃)λ1

1 + r

∫∫ [
1{B(ξ)≥B′++ξ}Π1(R1(B

′, ξ)) + 1{B(ξ)<B′++ξ}Π0

]
dF (B′|ξ) dG1(ξ)

}
,

subject to the promise keeping constraint,

R = u(w)−c− r

1 + r
W0+

(1− λ1)(1− δ̃)

1 + r
R0+

(1− δ̃)λ1

1 + r

∫∫ [
1{B(ξ)≥B′++ξ }R1(B

′, ξ)

+ 1{B(ξ)<B′++ξ}max {B(ξ), ξ}
]
dF (B′|ξ) dG1(ξ), (19)

and tomorrow’s participation constraints given poaching and following the mecha-

nism’s outcome. That is, whenever B(ξ) ≥ B′+ + ξ, R1(B
′, ξ) ≥ B′+ + ξ. Moreover,

it must hold that Π1(R0),Π1(R1) ≥ Π0, and R0 ≥ 0.

Lemma A.1. Assuming that u′(w) is bounded below by u′, the change in T [Π1] is

bounded by − 1
u′ .
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Proof. Consider two values R and R′ > R and their respective strategies. We use all

the elements of the strategy at R′ but change the wage so that the worker receives

a value of R. This implies a strictly lower wage, and provides a lower bound on the

expected profit of the firm at R, which is strictly larger than Π̂1(R). Hence Π̂1 is

strictly decreasing: Π̂1(R
′)− Π̂1(R) < −R′−R

u′ .

Lemma A.2. Assume Π1 is strictly decreasing and Π1(0) > Π0. Define Π1(S) = Π0.

Then, for all ξ, B(ξ) = S is a non-dominated credible strategy.

Proof. Take a feasible policy, θ = {w, δ̃, R0, R1, B} with B(ξ0) ̸= S for some ξ = ξ0.

First, let’s rule out B(ξ0) > S. Credibility imposes that the bid is feasible even when

the incumbent looses. This directly imposes B(ξ0) ≤ S.

We then show that B(ξ0) < S is weakly dominated by a strategy that chooses

B(ξ0) = S. Construct the alternative policy θ̂ = {ŵ, ˆ̃δ, R̂0, R̂1, B̂} that is identical

to θ for all ξ and B′, except when ξ = ξ0 in which case B̂(ξ0) = S and R̂1(B
′, ξ0) =

max{B′++ξ0, R1(B
′, ξ0)}. Let’s look at the different cases for B′++ξ0 and show that

it is feasible and at least as good as θ.

Case 1: when B′+ + ξ0 ≤ B(ξ0), the incumbent wins the auction in both θ and θ̂

since B̂(ξ0) > B(ξ0). In this case R1 and R̂1 are the same. The worker and the firm

are indifferent between the two strategies.

Case 2: when B′+ + ξ0 ≥ B̂(ξ0) the incumbent looses the auction in both θ and

θ̂ and get Π0. The worker moves to the poacher which must deliver at least as much

as the bids. The bid is larger in ˆtheta than under θ, hence he would prefer ˆtheta.

Case 3: Suppose that B(ξ0) < B′+ + ξ0 ≤ S. Under strategy θ, the incumbent

loses and receives Π0 and the worker receives max {B(ξ0), ξ0}. Under strategy θ̂,

B̂(ξ0) = S ≥ B′+ + ξ0. The incumbent wins the auction and pays B′+ + ξ0 to the

worker. The worker prefers strategy θ̂, as B′+ + ξ0 ≥ max {B(ξ0), ξ0}. The firm also

prefers strategy θ̂, as B′+ + ξ0 ≤ S implies Π1(B
′+ + ξ0) ≥ Π1(S) ≥ Π0 (since Π1 is

decreasing).

Overall, θ̂ is weakly preferred by the worker, and hence is feasible since θ is feasible.

At the same time, it is weakly preferred by the firm. For any feasible strategy with

B(ξ0) < S, there is a weakly preferred strategy B(ξ0) = S. We conclude that

B(ξ0) = S is non dominated.

Lemma A.3. If Π1(R) is γ(1 − β) strongly concave (and hence almost everywhere
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differentiable) and weakly decreasing, and g(v) = −u−1(v) is γ-strongly concave, then

Π̂ = T [Π1] is γ(1− β) strongly concave.

Proof. Using v = u(w) and g(v) = −u−1(v), we have assumed that g is γ-strongly

concave. We note that the solution is γ-strongly concave when δ̃=1, so we focus our

attention on the substantive part of δ̃=δ. The constraints in the Lagrangian are

µ
(
v−c− r

1 + r
W0+

(1− λ1)(1− δ)

1 + r
R0+

(1− δ)λ1

1 + r

∫∫ [
1
{
S ≥ B′+ + ξ

}
R1(B

′, ξ)

+ 1
{
S < B′+ + ξ

}
max {S, ξ} dF (B′|ξ) dG1(ξ)−R

)
+

(1− δ)λ1

1 + r

∫∫
µ1(B

′, ξ)1
{
S ≥ B′+ + ξ

} (
R1(B

′, ξ)−B′+ − ξ
)
dF (B′|ξ) dG1(ξ)

Where µ1(B
′, ξ) ≥ 0 is the multiplier for R1(B

′, ξ) − B′+ − ξ ≥ 0 and we abstract

from the additional simpler bound constraints on R1 and R0. We extract the FOCs:

g′(v) + µ = 0, Π′
1(R0) + µ = 0,

(µ1(B
′, ξ) + Π′

1(R1(B
′, ξ)) + µ)1

{
S ≥ B′+ + ξ

}
= 0.

Since R1 is irrelevant whenever 1 {S ≥ B′+ + ξ} = 0 we impose that it takes the value

S in such case and otherwise we have:

µ1(B
′, ξ) + Π′

1(R1(B
′, ξ)) + µ = 0.

We assumed that Π1 is weakly decreasing, which implies that −µ is also weakly

decreasing in R from the F.O.C. on R0. This tells us that R1(B
′, ξ) is at least weakly

increasing in R (since it is constant when the constraint binds or Π′
1(R1(B

′, ξ)) = −µ

when it does not, and Π1 is strictly concave). This implies that increasing R will

make the constraint R1(B
′, ξ) − B′+ − ξ ≥ 0 more slack, which in turn means that

the multiplier µ1(B
′, ξ) will decrease in R. Using finite difference notation ∆Rf(R) =

f(R′)− f(R), we get:

−∆Rµ = ∆RΠ
′
1(R1(B

′, ξ)) + ∆Rµ1(B
′, ξ)︸ ︷︷ ︸

≤0

≤ ∆RΠ
′
1(R1(B

′, ξ))

≤ γ(1− β)∆RR1(B
′, ξ)

similary, since Π1 is (1−β)γ-strongly convave, and g(·) is γ-strongly concave, we have

by definition that −∆Rµ = Π′
1(∆RR0) ≤ γ(1− β)∆RR0
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and

−∆Rµ = ∆Rg(v) ≤ γ∆Rv

−γ∆Rv ≤ ∆Rµ.

We then turn to the PK constraint, we have

∆RR = ∆Rv +
(1− λ1)(1− δ)

1 + r
∆RR0

+
(1− δ)λ1

1 + r

∫∫ [
1
{
S ≥ B′+ + ξ

}
∆RR1(B

′, ξ) dF (B′|ξ) dG1(ξ),

We multiply by γ(1−β) and use that the different 1/(1+r) terms sum to some p < 1

together with the derived inequalities to get:

pβ(−∆Rµ) + γ (1− β)∆Rv ≤ γ (1− β)∆RR

pβ(−∆Rµ) ≤ γ (1− β)∆RR + (1− β)∆Rµ

−∆Rµ (βp+ 1− β) ≤ γ (1− β)∆RR

−∆Rµβ(p− 1)︸ ︷︷ ︸
≥0

−∆Rµ ≤ γ (1− β)∆RR

−∆Rµ ≤ γ (1− β)∆RR

We then go to the envelop condition that gives us

Π̂(∆RR) = −∆Rµ ≤ γ (1− β)∆RR

which establishes that Π̂(R) is γ (1− β)-strongly concave.

Lemma A.4. The operator T maps L∞(S) into L∞(S).

Proof. Proving this only requires showing that the image through the operator is

bounded. The expression under the sup operator is directly bounded by

T [Π1](R) ≤ f − w +
1

1 + r
max{||Π1||∞,Π0}.

and so it is bounded above.

Regarding the lower bound, we need to show that there is a feasible strategy

that delivers a bounded value. We consider the strategy that fires the worker while

choosing the wage to deliver exactly R: δ̃ = 1 and u(w) = R + c + r
1+r

W0. This is

feasible since none of the constraints on promises or bids must hold. This provides a
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lower bound for

T [Π1](R) ≥ f − u−1(S̄ + c+
r

1 + r
W0) +

1

1 + r
Π0.

This implies that T [Π1], the image of Π1, is bounded, and therefore the image is in

L∞(S).

Lemma A.5. T is a contraction on L∞(S).

Proof. We prove Blackwell’s sufficient conditions. We start with monotonicity. Let

Π1 ≤ Π′
1 be two bounded functions. Making Π1 larger relaxes the constraint on the

space of strategies since it only appears to impose that promises need to be such that

Π(R) ≥ Π0. Therefore, any strategy feasible under Π1 will be feasible under Π
′
1. And

any sequence of such strategies leading to the sup will also be feasible. Second, Π1

enters linearly and positively in the expression under the sup in (18). The sup under

Π′
1 will then be at least as large as under Π1, demonstrating monotonicity.

Next, we turn to discounting. Let α ≥ 0 and Π′
1(R) = Π1(R) + α. Again, this

relaxes the constraints, so any feasible strategy under Π1 will be feasible under Π1+α.

We start with the optimal strategy at Π1 + α (or the sequence of strategies leading

to the sup) and collect the terms in the expression under the sup that contain the

constant α. This reveals the expression under the sup evaluated with Π1 without α,

at the optimal strategy (or the sequence of strategies) for Π1 + α, plus the constant
1−δ̃
1+r

α . By definition of the sup, it must be less than T [Π1]. Given that δ̃ ≥ δ, this

gives us that:

T [Π1 + α](R) ≤ T [Π1](R) +
1− δ

1 + r
α.

It follows that T is a contraction with modulus β = 1−δ
1+r

.

It follows that there exists a unique solution Π1 to the firm problem in L∞(S).

Lemma A.6. The fixed point solution T (Π1) = Π1 exists, is unique, continuous,

strictly concave, and strictly decreasing.

Proof. We have shown that the operator is a contraction, and we have shown that it

maps strongly concave functions into strongly concave functions. The fixed point is

then also strongly concave, and hence strictly concave. The uniqueness of the solution

follows from the contraction property. Strictly decreasing follows from Lemma A.1.

Continuity follows from concavity.
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Lemma A.7. We finally show that:

1. When the incumbent keeps the worker, the continuation values are given by

R1(B
′, ξ) = max {R,B′+ + ξ)} and R0 = R.

2. In the interior region, we have Π′
1(R) = − 1

u′(w(R))
, which implies that the wage

next period remains as in the current period whenever R1(B
′, ξ) = R.

Proof. We write the Lagrangian for the remaining arguments. Specifically:

L = f − w +
δ̃

1 + r
Π0 +

(1− δ̃)(1− λ1)

1 + r
Π1(R0)

− µ

(
u(w)− c− r

1 + r
W0 +

(1− λ1)(1− δ̃)

1 + r
R0 −R

)
+

(1− δ̃)λ1

1 + r

∫∫
H(B′, ξ, R1(B

′, ξ), µ, µ̄(B′, ξ), µ(B′, ξ)) dF (B′|ξ) dG1(ξ)

where H is function of 6 scalars:

H(B′, ξ, R1, µ, µ̄, µ) = 1{S≥B′++ξ}Π1(R1) + 1{S<B′++ξ}Π0 − µ1{S≥B′++ξ }R1

− µ1{S<B′++ξ}max {S, ξ}+ 1{S≥B′++ξ}
(
µ · (R1 −B′+ − ξ) + µ̄ · (R1 − S)

)
We introduced the two sets of constraints that whenever B′+ + ξ ≤ S we must

impose that B′+ + ξ ≤ R1(B
′, ξ) ≤ S. The lower bound is captured by multiplier

µ(B′, ξ) while the upper bound is captured by µ̄(B′, ξ). We scaled both multipliers by
(1−δ̃)λ1

1+r
f(B′|ξ)g1(ξ) to make things readable. Finally, let µ be the Lagrange multiplier

of the promise-keeping constraint. We ignore R1, R0 ≥ 0 and verify it holds for the

optmial choice. The first-order conditions for w and R0 are

−1− µu′(w) = 0 and Π′
1(R0)− µ = 0.

To maximize with respect to R1(B
′, ξ) we apply a particular case of the Euler-

Lagrange theorem, one that does not require the derivative of the control and states

that we can simply take a derivative of the H function. It is also equivalent to di-

rectly checking the small deviations of the R1(B
′, ξ) as in a simepl case of a Frechet

derivative. We get the following conditions:

1{S≥B′++ξ}
(
Π′

1(R1(B
′, ξ))− µ+ µ̄B′,ξ + µ(B′, ξ)

)
= 0,

First, whenever the firm loses the auction, then the promised value is not relevant.

When the firm wins the auction, if the lower bound of the value is binding, then
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R1(B
′, ξ) = B′+ + ξ, if the upper bound is binding, then R1(B

′, ξ) = S. In the

interior region, we get that

Π′
1(R1(B

′, ξ)) = µ = Π′
1(R0),

which by strict concavity gives R1(B
′, ξ) = R0. Since we also have R0 ≤ S, we get

R1(B
′, ξ) = max {R0, B

′+ + ξ}. WhenB′++ξ > S, we can assume thatR1(B
′, ξ) = S.

The envelope condition gives us Π′
1(R) = µ = Π′(R0) which by the strict concavity

of Π1 tells us that R0 = R. Together with the first-order condition for the wage, it

also tells us that Π′
1(R) = − 1

u′(w(R))
.

A.2 Identification Step 3

A.2.1 Distributions of transition wages

Lemma A.8. We show that the wage after a move for a worker x moving from a

firm y to a firm y′ has support in [w(x, y′, 0), w(x, y′, S(x, y′))] with CDF given by:

FJJ(w|x, y, y′) =
G1(S −R(x, y′, w))

G1(S(x, y)− S(x, y′))
(20)

Proof. We use the result from the model that the value a worker receives after a move

is given by R′ = max {S(x, y)− ξ, 0}, and the worker collects ξ in addition. This

implies that the wage is given by w(x, y′, R′). We treat the cases R′ = 0 and R′ > 0

separately. Because the move has occurred, the distribution of ξ is conditional on

S(x, y′)+ ξ > S(x, y), and therefore the CDF of starting wages is G1(ξ)/G1(S(x, y)−
S(x, y′)).

We know that w(x, y′, R′) is monotone in R′, and therefore the lowest wage offered

will be w(x, y′, 0). We have R′ = 0 iff ξ > S. This then implies that there is a mass

point at w(x, y′, 0)

FJJ(w(x, y
′, 0)|x, y, y′) = P[ξ > S(x, y)] = G1(S(x, y))/G1(S(x, y)− S(x, y′)).

When ξ < S, we have R′ = S(x, y)− ξ and for any wage w ∈]w(x, y′, 0), w(x, y′, S ′)[,

the CDF following a job-to-job transition is given by

FJJ(w|x, y, y′) = P[wt+1 ≤ w|x, yt = y, yt+1 = y′,mt = JJ]

= P[w(x, y′, R′) ≤ w|x, yt = y, yt+1 = y′,mt = JJ]

= P[w(x, y′, S(x, y)− ξ) ≤ w|S(x, y′) + ξ > S(x, y)]

= G1(S(x, y)−R(x, y′, w))/G1(S(x, y)− S(x, y′)).
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Therefore, we have for all w ∈ [w(x, y′, 0), w(x, y′, S(x, y′))[ that FJJ(w|x, y, y′) =

G1(S(x, y)−R(x, y′, w))/G1(S(x, y)− S(x, y′)).

Lemma A.9. We show that FUE(w|x, y′) = G0(−R(x, y′, w))/G0(−S(x, y′)).

FUE(w|x, y′) = P[wt+1 ≤ w|x, yt+1 = y′,mt = UE]

= P[w(x, y′,−ξ) ≤ w|ξ > −S(x, y′)]

= G0(−R(x, y′, w))/G0(−S(x, y′)).

A.2.2 Proof of Lemma 3

We can then prove Lemma 3. We start with the result from Lemma A.8 which gives

that
FJJ(w|x, y, y′) = G1(S(x, y)−R(x, y′, w))/G1(S(x, y)− S(x, y′)).

Define z = S(x, y)−R(x, y′, w) and replace w = w(x, y′, S(x, y)− z) to get

FJJ

(
w(x, y′, S(x, y)− z)|x, y, y′

)
= G1(z)/G1(S(x, y)− S(x, y′)),

for all z ∈ [S(x, y)− S(x, y′), S(x, y)].

First, consider within-group JJ-transitions from yt = y to yt+1 = y. Such a move

requires a draw 0 < ξ ≤ S(x, y). Under the assumption that G1(0) = 1/2, we

therefore get:
FJJ(w(x, y, S − z)|x, y, y) = 2G1(z).

Hence, G1(z) is identified on [0, S], where S = maxS(x, y).

A.2.3 Proof of Lemma 4

We proceed in multiple steps. We start by considering the probability of a move

between two firms, which is given by

pJJ(y
′|x, y) = δ(x, y)λ1

v(y′)

V
G1(S(x, y)− S(x, y′)),

We then consider the following ratio

pJJ(y
′|x, y)

pJJ(y′′|x, y)
=

v(y′)

v(y′′)

G1(S(x, y)− S(x, y′))

G1(S(x, y)− S(x, y′′))

where the ratio of G1() is identified from Lemma 3 and knowledge of S(x, y) from

Lemma 2. The left-hand side of the equation is also known. This shows us that

v(y′)/v(y′′) is known for all pairs of viable matches. Provided sufficient overlap be-

tween matches (that is, there is a path between all y′ and y′′) we identify all ratios.

Since
∑

y v(y) = V , this means that we have also identified v(y)/V for all y.
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Knowing v(y′)/V , the expression for pJJ identifies δ(x, y)λ1. We then move to

expressing the probability of separation to unemployment:

P[mt = EU|x, yt = y] = δ(x, y) + δ(x, y)λ1

(∫
(1− ϕ(x, y′))

v(y′)

V
dy′
)
G1(S(x, y)),

where the left hand side if known from Step 1. The right-hand term of the sum is

also known since ϕ(x, y), G1 and v(y′)/V are known, and δ(x, y)λ1 is known from the

previous paragraph. This gives us that δ(x, y) is identified. We also see that λ1 is

identified by going back to the expression for pJJ.

A.2.4 Proof of Lemma 5

We start by writing down the probability for transitioning from unemployment into

being employed in firm y for each worker type x:

P[yt+1 = y,mt = UE|x] = λ0
v(y)

V
G0(−S(x, y))

where we know v(y)/V which means that λ0G0(−S(x, y)) is known. We then turn to

the distribution of starting wages from unemployment from Lemma A.9 given by:

FUE(w|x, y) = G0(−R(x, y, w))/G0(−S(x, y)).

We introduce ξ = −R(x, y, w) and use R(x, y, w(x, y,−ξ)) = ξ to write

∀ξ ∈ [−S(x, y), 0] λ0G0(ξ) =
V

v(y)
P[yt+1=y,mt=UE|x]FUE(w(x, y,−ξ)|x, y),

which identifies λ0G0(ξ) for ξ ∈ [−S̄, 0].

A.3 Proof of Lemma 6: Identification Step 4
We use equation (2) at R = S(x, y):

rΠ1(x, y, S(x, y)) = rΠ0(y) = (1 + r) (f(x, y)− w(x, y, S(x, y)))

where we can directly express the production function in terms of known quantities

and Π0(y) in
f(x, y) = w(x, y, S(x, y)) +

r

1 + r
Π0(y). (21)
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The final step is to express the present value of a vacancy where everything is known

except for the total number of vacancies V .

rVΠ0(y) = λ0

∫∫ 0

−S(x,y)

G0(ξ)

u′(w(x, y,−ξ))
ℓ0(x) dξ dx

+ λ1

∫∫∫ 0

−S(x,y)

G1(ξ + S(x, y′))

u′(w(x, y,−ξ))
δ(x, y)ℓ1(x, y

′) dξ dx dy′. (22)

Hence, we know Π0(y) up to a scale constant V . Finally, we identify the constant V

by matching the labor share in the data, i.e. the ratio of average labor expenditure

to average revenue E[wit]/E[f(xi, yj(i,t))]. We have that

labor share = E [wit] /E
[
w(xi, yj(i,t), S(xi, yj(i,t))) +

1

V

rV

1 + r
Π0(y)

]
, (23)

where VΠ0(y) is known from equation (22), the labor share is observed directly, and

all other objects are also known besides V . This pins down V and, consequently,

Π0(y). f(x, y) is then known by equation (21).

We then focus on identifying c̃ = c(x, y)+b(x). c̃(x, y) is the disutility of labor net

of amenities of an (x, y)-match plus the forgone home production. Using the equation

for the match surplus we have

c̃(x, y) = u(w(x, y)) +
δ(x, y)λ1

1 + r

∫ ∞

S(x,y)

G1(ξ) dξ + [r + δ(x, y)]S(x, y),

where all elements besides c̃(x, y) are already identified. Finally, we note that knowing

V we also know v(y) since we identified v(y)/V in Lemma 4. With knowledge of v(y)

we identify the total mass of jobs in the economy by adding vacant and active jobs

n(y) =
∫
ℓ1(x, y) dx + v(y)), which identifies n(y) and concludes the proof of the

lemma.
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B Online Appendix – not for publication

B.1 Discussion of the Poaching Mechanism of Section 1.3
To fix ideas, consider an ascending auction for the worker’s services. Denote the firms’

reservation surpluses by S ≡ S(x, y) and S ′ ≡ S(x, y′). As the types are unobserved,

reservation surpluses are also private information. Intuitively, an ascending auction

should deliver the efficient outcome, and truthfulness should be a dominant strategy

for firms.

The ascending auction argument for truthfulness is as follows. First, firms should

not make offers above their reservation values S and S ′, respectively. Second, if

the incumbent bids B, then the poacher should bid B′ > B − ξ, as it knows that

the worker will receive an additional ξ when moving. If the poacher bids B′, the

incumbent should bid B ≥ B′ + ξ, as the worker will need to be compensated for

the forgone ξ. Firms continue to make alternating bids until one of them drops out.

Therefore, the incumbent retains the worker if S ≥ S ′ + ξ and pays the second price

S ′ + ξ. The poacher hires the worker if S ′ + ξ > S and pays the second price S − ξ.

When moving to the poacher, the worker receives an additional ξ and thus receives

S in total. In the event that S ′ = 0 and ξ > S, the worker can choose to leave the

incumbent for unemployment and collect ξ. It isconvenient to represent the outcome

of this ascending auction as a direct mechanism that resembles the usual second-price

sealed bid auction, augmented to account for the mobility shock ξ.

B.2 Additional details for Section 2
The present value for the employed worker The value to a type-x worker

employed by a type-y firm at wage w is given by

W1(x, y, w) = u(w)− c(x, y) +
δ(x, y)

1 + r
W0(x) +

δ(x, y)λ1

1 + r
(W0(x) +R0)

+
δ(x, y)λ1

1 + r

∫∫ [
1{B(ξ)≥B′++ξ} (W0(x) +R1(B

′, ξ))

+ 1{B(ξ)<B′++ξ} (W0(x) + max {B(ξ), ξ})
]
dF0(B

′|x, ξ) dG1(ξ),
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with S = S(x, y) and S ′ = S(x, y′). Substituting in the equilibrium R1, R0, the

outcomes of the auction mechanism, and rearranging we obtain:

rW1(x, y, w) = u(w)− c(x, y) +
δ(x, y)

1 + r
(W0(x)−W1(x, y, w))

+
λ1δ(x, y)

1 + r

∫ [∫ S(x,y)−S(x,y′)

W1(x,y,w)−W0(x)−S(x,y′)

[W0(x) + S(x, y′) + ξ −W1(x, y, w)] g(ξ) dξ

+

∫ S(x,y)

S(x,y)−S(x,y′)

[S(x, y) +W0(x)−W1(x, y, w)] g(ξ) dξ

+

∫ ∞

S(x,y)

[W0(x) + ξ −W1(x, y, w)] g(ξ) dξ

]
v(y′)

V
dy′.

Let w(x, y, R) be the wage that provides surplus R to the worker. Multiplying by (1+

r), subtracting W1(x, y, w) and rW0(x) from both sides, and evaluating at w(x, y, R),

we obtain the utility flow of the wage equation (7).

And further integrating by part the integrals with respect to ξ, we finally obtain,

u(w(x, y, R)) =
r + δ(x, y)

1 + r
R +

r

1 + r
W0(x) + c(x, y)

− δ(x, y)λ1

1 + r

∫ ∞

S(x,y)

G1(ξ) dξ

− δ(x, y)λ1

1 + r

∫ [∫ S(x,y)

R

G1(R
′ − S(x, y′)+) dR′

]
v(y′)

V
dy′. (24)

The minimum wage is w(x, y) = w(x, y, 0) yielding zero surplus. The maximal wage

is w(x, y) = w(x, y, S(x, y)) yielding maximal surplus S(x, y).

This wage equation is the value of the wage chosen by the firm given types (x, y)

and a given worker surplus R (or value W0(x) + R). First, we note that a greater

promised surplus R implies a greater wage:

(1 + r)u′(w(x, y, R))
∂w(x, y, R)

∂R
=

r + δ(x, y) + δ(x, y)λ1

∫
G1

[
R− S(x, y′)+

] v(y′)
V

dy′ > 0. (25)

Second, for a fixed R, a greater amenity −c(x, y) requires a lower wage, as in Rosen’s

(1986) compensating wage differential story. Third, the worker may get an outside

offer as a result of holding this job. The wage function depends on y through c(x, y),
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δ(x, y) and S(x, y), and we have

(1 + r)u′(w(x, y, R))
∂w(x, y, R)

∂S(x, y)
=

− δ(x, y)λ1

∫ (
G1[S(x, y)]−G1[S(x, y)− S(x, y′)+]

) v(y′)
V

dy′ < 0. (26)

The effect of the current reservation surplus is another compensating differential. A

greater surplus decreases the current wage required to achieve the promised value.

However, there are two effects that go in opposite directions. By increasing S(x, y) we

reduce job-to-job mobility as fewer vacancies can beat the current job. This reduces

future payoffs and increases the wage for a given R. But by increasing S(x, y) we

also increase the likelihood of future wage raises (in the current job). It happens that

the former effect dominates the latter. The intuitions of the basic sequential auction

model of Postel-Vinay and Robin (2002) thus carry through to the more general setup,

perhaps in a more transparent way.

Surplus equation Substituting expression (8) for the maximum wage along with

R = S(x, y) into the wage equation (7) we have

u(f(x, y)− r(1 + r)−1Π0(y)) = c(x, y) +
r + δ(x, y)

1 + r
S(x, y) +

r

1 + r
W0(x)

− λ1δ(x, y)

1 + r

∫
ϕ(x, y′)

[∫ S(x,y)−S(x,y′)

S(x,y)−S(x,y′)

[S(x, y′) + ξ − S(x, y)] g(ξ) dξ

+

∫ ∞

S(x,y)−S(x,y′)

[max {S(x, y)− ξ, 0}+ ξ − S(x, y)] g(ξ) dξ

]
v(y′)

V
dy′.

The first inner integral evaluates to zero. The second inner integral simplifies by

noting that when ξ < S(x, y), max {S(x, y)− ξ, 0} + ξ − S(x, y) = 0 and when

ξ ≥ S(x, y), max {S(x, y)− ξ, 0} + ξ − S(x, y) = ξ − S(x, y), so we only need to

consider ξ ≥ S(x, y), which implies that the inner integral does not depend on y′.

The equation defining the surplus then simplifies to equation (9).
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Firm profit Substitution in the outcomes of the auction mechanism we can write

the firm profit as

[r + δ(x, y)] Π1(x, y, R) = (1 + r) [f(x, y)− w(x, y, R)] + δ(x, y)Π0(y)

+ δ(x, y)λ1

∫ [ ∫ S(x,y)−S(x,y′)+

R−S(x,y′)+

(
Π1(x, y, S(x, y

′)+ + ξ)− Π1(x, y, R)
)
dG1(ξ)

+

∫ S(x,y)

S(x,y)−S(x,y′)+
(Π0(y)− Π1(x, y, R))

]
dG1(ξ)

v(y′)

V
dy′
}
. (27)

Moreover, Theorem 1 establishes that

∂Π1(x, y, R)

∂R
= − 1

u′(w(x, y, R))
.

This is a simple consequence of the Envelope Theorem, which can also be obtained

by differentiating equation (27) and using equation (25).

If we define the match surplus as the maximal value of R such that Π1(x, y, R) ≥
Π0(y), then the profit function being decreasing, S(x, y) is defined by the equality

Π1(x, y, S(x, y)) = Π0(y). (28)

We can therefore also deduce firm profits from worker wages as

Π1(x, y, R) = Π0(y) +

∫ S(x,y)

R

dR′

u′(w(x, y, R′))
. (29)

Value of a vacancy Let J(x, y, R) = Π1(x, y, R)− Π0(y) be the gain for the firm

of offering a surplus R to the worker. At the equilibrium offers and counter offers the

value of a vacancy (3) becomes:

rΠ0(y) = λ0
L0

V

∫∫ ∞

−S(x,y)

J(x, y,max{−ξ, 0}) dG0(ξ)
ℓ0(x)

L0

dx

+λ1
L1

V

∫∫∫ ∞

S(x,y′)−S(x,y)

J(x, y,max{S(x, y′)−ξ, 0}) dG1(ξ)(1−δ(x, y′))
ℓ1(x, y

′)

L1

dx dy′.
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Breaking the inner integrals into regions above and below the value of ξ at which

max{·, 0} becomes 0, we have

rΠ0(y) = λ0
L0

V

∫
ϕ(x, y)

[
G0(0)J(x, y, 0) +

∫ 0

−S(x,y)

J(x, y, 0− ξ) dG0(ξ)

]
ℓ0(x)

L0

dx

+ λ1
L1

V

∫∫
ϕ(x, y)

[
G1(S(x, y

′))J(x, y, 0)

+

∫ S(x,y′)

S(x,y′)−S(x,y)

J(x, y, S(x, y′)− ξ) dG1(ξ)

]
(1− δ(x, y′))

ℓ1(x, y
′)

L1

dx dy′. (30)

Now, consider the two integrals involving ξ in turn. In the first case we have∫ 0

−S(x,y)

J(x, y,−ξ) dG0(ξ) = −
[
J(x, y,−ξ)G0(ξ)

]0
−S(x,y)

−
∫ 0

−S(x,y)

∂J

∂R
(x, y,−ξ)G0(ξ) dξ

= −J(x, y, 0)G0(0) +

∫ 0

−S(x,y)

G0(ξ)

u′(w(x, y,−ξ))
dξ,

where the first equality uses integration by parts and the second equality uses the

fact that we defined J(x, y, S(x, y)) = 0 and that Lemma (A.7) implies that that
∂J
∂R

(x, y, R) = − 1
u′(w(x,y,R)

. Similarly, in the second case we have∫ S(x,y′)

S(x,y′)−S(x,y)

J(x, y, S(x, y′)− ξ) dG1(ξ)

= −
[
J(x, y, S(x, y′)− ξ)G1(ξ)

]S(x,y′)
S(x,y′)−S(x,y)

−
∫ S(x,y′)

S(x,y′)−S(x,y)

∂J

∂R
(x, y, S(x, y′)− ξ)G1(ξ) dξ

= −J(x, y, 0)G1(S(x, y
′)) +

∫ S(x,y′)

S(x,y′)−S(x,y)

1

u′(w(x, y, S(x, y′)− ξ))
G1(ξ) dξ

= −J(x, y, 0)G1(S(x, y
′)) +

∫ 0

−S(x,y)

G1(ξ + S(x, y′))

u′(w(x, y,−ξ))
dξ.

Substituting these two expressions into equation (30) we obtain (11), where, given

the bound of the integrals, we can remove ϕ(x, y).

B.3 Proof of Lemma 1: Trajectories are Markovian
We treat the different mt states separately and show that the Markov property holds

for each. When the worker is unemployed, we simply write yt = 0 and wt = ∅. Our
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goal is to show

P[wt+1, yt+1,mt+1|x,wt, yt,mt,Ωt−1] = P[wt+1, yt+1,mt+1|x,wt, yt,mt]

By applying successive conditioning,

P[wt+1, yt+1,mt+1|x,wt, yt,mt,Ωt−1] = P[mt+1|wt+1, yt+1, x, wt, yt,mt,Ωt−1]

× P[wt+1|yt+1, x, wt, yt,mt,Ωt−1]× P[yt+1|x,wt, yt,mt,Ωt−1].

We proceed by showing that each of these three probabilities are independent of Ωt−1.

Mobility mt+1 It follows from the model that mobility is only a function of the

surplus and not of the wage itself.

When an unemployed worker x meets a firm y, the match is formed if and only if

0 ≤ −ξ ≤ S(x, y) (remember that G0 has negative support):

P [mt+1 = UE|x, yt+1 = 0,Ωt] = λ0

∫
G0(−S(x, y))ϕ(x, y)

v(y)

V
dy,

and for workers employed in yt > 0 we have (using the short-hand notations S =

S(x, y) and S ′ − S(x, y′)):

mt+1 = EU if ξ > max {S, S ′ + ξ}:

P [mt+1 = EU|x, yt+1 = y, wt+1,Ωt]

= δ(x, y) + δ(x, y)λ1

∫
[1− ϕ(x, y′)]

v(y′)

V
dy′ ×G1(S),

mt+1 = JJ if S ′ + ξ > max {S, ξ} or S ′ + ξ > S and S ′ > 0:

P [mt+1 = JJ|x, yt+1 = y, wt+1,Ωt] = δ(x, y)λ1

∫
G1(S − S ′)ϕ(x, y′)

v(y′)

V
dy′,

mt+1 = EE if S ≥ S ′+ + ξ or there was no offer:

P [mt+1 = EE|x, yt+1 = y, wt+1,Ωt] = δ(x, y)λ1 + δ(x, y)λ1

∫
G1(S − S ′+)

v(y′)

V
dy′.

Therefore P[mt+1|x,wt, yt,mt, wt+1, yt+1,Ωt−1] = P[mt+1|x,wt, yt,mt, wt+1, yt+1].

Wage wt+1 The next step is to examine the law of motion of wages. Whenever

unemployed the wage is missing (wt = ∅), so we do not need to consider cases

mt ∈ {UU,EU} for the law of motion of the wage. We then need to look at UE, EE,

and JJ. In each case, we seek an expression for P [wt+1|x, yt, wt, yt+1,mt,Ωt−1].

When mt = UE, we know that, conditional on moving, the offer is set to deliver a
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surplus −ξ to the worker, where ξ is a draw from G0, truncated below by −S(x, yt+1).

The wage is set through the injective function w(x, y, R) and so:

P [wt+1 ≤ w′|x,wt = w, yt = 0, yt+1 = y,mt = UE,Ωt−1]

= P [w(x, y,−ξ) ≤ w′|ξ ≥ −S(x, y)] := FUE(w
′|x, y).

Similarly when mt = JJ, we know that conditional on moving from yt = y to yt+1 = y′

the offer is set to deliver a surplus (S(x, y) − ξ)+ to the worker, where ξ is a draw

from G1, truncated below by S(x, y)− S(x, y′):

P [wt+1 ≤ w′|x,wt = w, yt = y, yt+1 = y′,mt = JJ,Ωt−1]

= P
[
w(x, y′, (S(x, y)− ξ)+) ≤ w′ | ξ ≥ S(x, y)− S(x, y′)

]
:= FJJ(w

′|x, y, y′).

Here, we note that in addition it is independent of the previous wage.

We then consider our final case of mt = EE. In this case, the wage only changes

if an outside offer comes in and is above the surplus the worker is getting from their

current wage. We know that the surplus the worker receives at wage w from a firm

y is equal to 0 ≤ R(x, y, w) ≤ S(x, y). The joint probability of mt = EE and

wt+1 ≤ w′ ∈ [w,w(x, y, S(x, y))] for a worker currently employed at a firm yt = y

with a wage wt = w is the probability of drawing an offer yt+1 = y′ and a ξ such that

S(x, y′)+ + ξ ≤ R(x, y, w′):

P [mt = EE, wt+1 ≤ w′|x,wt = w, yt = y,Ωt−1]

= δ(x, y)(1− λ1) + δ(x, y)λ1

∫
G1

[
R(x, y, w′)− S(x, y′)+

] v(y′)
V

dy′.

Hence

P [wt+1 ≤ w′|x,wt, yt, yt+1,mt = EE,Ωt−1]

= 1 {w′ ≥ w} P [mt = EE, wt+1 ≤ w′|x,wt = w, yt = y,Ωt−1]

P [mt = EE|x, yt]

= 1 {w′ ≥ w}
1− λ1

∫
G1 [R(x, y, w′)− S(x, y′)+] v(y

′)
V

dy′

1− λ1

∫
G1 [S(x, y)− S(x, y′)+] v(y

′)
V

dy′
:= FEE(w

′|x, y, w).

This shows that P[wt+1|x,wt, yt, yt+1,mt=EE,Ωt−1 ] = P[wt+1|x,wt, yt, yt+1,mt=EE ].

Firm yt+1 Next we turn to yt+1. When mt = EU, yt+1 = 0. When mt = EE, yt+1 =

yt. When mt = UE, P [yt+1 = y′|x,mt = UE,Ωt−1] ∝ v(y′)
V

G0(−S(x, y′)). Finally,
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when mt = JJ, we get

P [yt+1 = y′|x,mt = JJ, yt = y, wt,Ωt−1] ∝ δ(x, y)λ1
v(y′)

V
ϕ(x, y′)G1(S(x, y)−S(x, y′)).

This establishes P[yt+1|x,wt, yt,mt,Ωt−1] = P[yt+1|x,wt, yt,mt] and concludes the

proof for the Markov property of the model.

B.4 Identification Step 1
We adapt the proof of Bonhomme et al. (2019) to our context of Markovian wages

on the job. For simplification, we consider the case with discrete wage outcomes but

refer to the original paper for a proof with wages belonging to a continuum.

Throughout the proof, we assume that we have a discretization of the wage where

the assumptions hold. This discretization is simply a list of support points wp for

p ∈ 1, ..., nw. Let also q ∈ {1, ..., nx} denote the values for worker types x.

Lemma B.1. We consider 2 firm types y, y′ and one middle wage w2. The distribu-

tions

P[w1|x, y1,m1 = JJ,m2 = EE],P[w3|x,w2, y2,m1 = JJ,m2 = EE],

P[x,w2|y1, y2,m1 = JJ,m2 = EE],

are identified from P[w1, w2, w3|y1, y2,m1 = JJ,m2 = EE] for all y1, y2 ∈ {y, y′} under

the assumptions that for any y1, y2 ∈ {y, y′},
1. Wages are Markovian within job spells:

P[w3|x,w2, w1, y1, y2,m1 = JJ,m2 = EE] = P[w3|x,w2, y1, y2,m1 = JJ,m2 = EE].

2. Wages after a move do not depend on wages before the move:

P[w2|x, y1, y2, w1,m1 = JJ,m2 = EE] = P[w2|x, y1, y2,m1 = JJ,m2 = EE].

3. The distributions P[w1|x, y1,m1 = JJ,m2 = EE] and P[w3|x,w2, y1,m1 = JJ,m2 =

EE] are linearly independent with respect to x for all y1, w2 (that is, the CDFs

given one x cannot be replicated by the linear combination of the CDFs of w1

given the other x′).

4. d(x, y1, y2, w2) = P[x,w2|y1, y2,m1=JJ,m2=EE] ̸= 0 for all x.

5. The following quantity is different for different x’s:

d(x, y, y, w2)d(x, y
′, y′, w2)

d(x, y′, y, w2)d(x, y, y′, w2)
.
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Proof. We are going to show that given data around a move, we can identify the law

of motion for each pair of worker and firm types that employ all types. Throughout

y1 and y2 can be either y or y′. We can write the following joint density as

P[w1, w2, w3|y1, y2,m1 = JJ,m2 = EE]

=
∑
x

P[x|y1, y2,m1 = JJ,m2 = EE]× P[w1, w2, w3|x, y1, y2,m1 = JJ,m2 = EE]

=
∑
x

P[x|y1, y2,m1 = JJ,m2 = EE]× P[w1|x, y1, y2,m1 = JJ]

× P[w2|x, y1, y2,m1 = JJ,m2 = EE]× P[w3|x,w2, y1, y2,m1 = JJ,m2 = EE],

where we used assumptions i) and ii) to establish the last equality. We then denote

the data matrix of the joint density of w1, w3 for a fixed value of w2 and a given y1, y2

by A(y1, y2, w2) ∈ Rnw×nw . Hence we have

A(y1, y2, w2) =
[
P[w1 ≤ wp, w2, w3 ≤ wq|y1, y2,m1 = JJ,m2 = EE]

]
p,q
.

We similarly define the nw-by-nx matrices

M1(y1) =
[
P[w1 ≤ wp|x = q, y1,m1 = JJ,m2 = EE]

]
p,q
,

MEE(y2, w2) =
[
P[w3 ≤ wp|x = q, w2, y2,m1 = JJ,m2 = EE]

]
p,q
,

and the the following diagonal matrix

D(y1, y2, w2) = diag
[
P[x = q, w2|y1, y2,m1 = JJ,m2 = EE]

]
q
,

where M1(y),MEE(y2, w2) ∈ Rnw×nx and D(y1, y2, w2) ∈ Rnx×nx . We can then write

the identifying restrictions as

A(y1, y2, w2) = M1(y1)D(y1, y2, w2)M
⊤
EE(y2, w2).

The next step is to take the singular value decomposition of A(y, y′, w2) = USV ⊤

where the matrix S ∈ Rnx×nx by assumption iv) and iii) is diagonal, and U, V ∈
Rnw×nx are such that U⊤U=V ⊤V=Inx . For all y1, y2 ∈ {y, y′}, define B(y1, y2, w2) =

S− 1
2U⊤A(y1, y2, w2)V S− 1

2 where B(y1, y2, w2) ∈ Rnx×nx is invertible again by assump-

tion iii) and iv). Note that the different B(y1, y2, w2) matrices for each y1, y2 ∈ {y, y′}
use the same U, S, V matrices defined as the SVD for A(y, y′, w2).

We first note a property we will use at the end. We have thatD(y, y′, w2)M
⊤
EE(y

′, w2)

is full row rank (nx) by assumption iii) and iv), hence there exist a matrix M̃ ∈ Rnw×nx
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such that
D(y, y′, w2)M

⊤
EE(y

′, w2)M̃ = Inx .

This implies that

UU⊤M1(y) = UU⊤M1(y)D(y, y′, w2)M
⊤
EE(y

′, w2)M̃

= UU⊤USV ⊤M̃

= M1(y)D(y, y′, w2)M
⊤
EE(y

′, w2)M̃

= M1(y).

We then construct

B(y, y, w2)B(y′, y, w2)
−1 = S− 1

2U⊤M1(y)D(y, y, w2)M
⊤
EE(y, w2)V S− 1

2

×
(
S− 1

2U⊤M1(y
′)D(y′, y, w2)M

⊤
EE(y, w2)V S− 1

2

)−1

= Q1(y)D(y, y, w2)D(y′, y, w2)
−1Q1(y

′)−1,

where we used Q1(y) = S− 1
2U⊤M1(y) ∈ Rnx×nx . We note that Q1(y

′) is full rank since

A(y′, y, w2) has rank nx from Assumption part iii) and iv). We have then established

the following eigenvalue problem:

B(y, y, w2)B(y′, y, w2)
−1B(y′, y′, w2)B(y, y′, w2)

−1 =

Q1(y)D(y, y, w2)D(y′, y, w2)
−1D(y′, y′, w2)D(y, y′, w2)

−1Q1(y)
−1.

Provided that the eigenvalues are unique, as guaranteed by assumption v), this iden-

tifies Q1(y). We have established that UU⊤M1(y) = M1(y) and hence we identified

M1(y) = US
1
2Q1(y) up to the scale of the eigenvalue. This scale is pinned down by

the fact that the columns of M1(y) are each a c.d.f which allows using that they equal

1 at wnw .

With Q1(y) identified we can use the fact that

Q−1
1 (y)S− 1

2A(y, y′, w2) = D(y, y′, w2)M
⊤
EE(y

′, w2).

All objects on the left hand side are known and hence MEE(y
′, w2) is identified up to

scale. We can use again, that the columns are CDFs and hence equal 1 at the top.

Once MEE(y
′, w2) and M1(y) are known we can get P[w2, x|y1 = y, y2 = y′,m1 =

JJ,m2 = EE] from A(y, y′, w2). This gives us the wage conditional on moving, as well

as the destination firm for each of the worker types.
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Lemma B.2. We recover M1(y
′′) and MEE(y

′′, w) for all other y′′ and w using the

identified MEE(y, w2) and M1(y) from Lemma B.1.

Proof. We have identified M1(y) and MEE(y, w2) for a specific y and w2. We then

note that

A(y′′, y, w2)MEE(y, w2) = M1(y
′′)D(y′′, y, w2)M

⊤
EE(y, w2)MEE(y, w2),

where M⊤
EE(y, w2)MEE(y, w2) is know and invertible from Lemma B.1. Hence, the

matrix M1(y
′′)D(y′′, y, w2) is identified. We finally use the fact that M1(y

′′) is a CDF

to separate M1(y
′′) from D(y′′, y, w2). This identifies M1(y

′′) and D(y′′, y, w2) for all

y′′ with the same labeling as in Lemma B.1. Whenever D(y′′, y, w2) we can’t get the

corresponding wage density since there are no movers. Though there are no movers

only when that particular type never works in the firm.

Next we use the same reasoning for a different w2. We note that for the y and y′

of Lemma B.1 and a w′
2 we have:

M1(y)
⊤A(y, y′, w′

2) = M1(y)
⊤M1(y)D(y, y′, w′

2)M
⊤
EE(y, w

′
2),

where M1(y)
⊤M1(y) is known and invertible. Hence D(y, y′, w′

2)M
⊤
EE(y, w

′
2) is identi-

fied. We finally use the fact that M⊤
EE(y, w

′
2) is a CDF to separate M⊤

EE(y, w
′
2) from

D(y, y′, w′
2). This identifies both.

Lemma B.3. P[y4, w4,m3, y3, w3,m2|m1 = EE, y1, w1, w2, x] is identified from

P[y4, w4,m3, y3, w3,m2, w2|m1 = EE, y1, w1] provided that

1. P [w2, x|m1 = EE, y1, w1] are linearly independent.

2. P[w2|x,w1, y1,m1=EE] is known (from Lemma B.1)

Proof. We first consider the following marginal distribution:

P[w2|m1 = EE, y1, w1] =
∑
x

P[w2|x,m1 = EE, y1, w1]P[x|m1 = EE, y1, w1], (31)

where P[w2|x,m1 = EE, y1, w1] is known and the column rank assumption of Lemma

B.1 gives that P[x|m1 = EE, y1, w1] is identified.
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We then note that

P[y4,w4,m3, y3, w3,m2, w2|m1 = EE, y1, w1]

=
∑
x

P[y4, w4,m3, y3, w3,m2|m1 = EE, y1, w1, w2, x]

× P [w2, x|m1 = EE, y1, w1]

where the left hand side is data and P [w2, x|m1 = EE, y1, w1] is known from the

previous step and Lemma B.1. The linear independence assumption concludes the

proof.

Corollary 1. P[y4, w4,m3, y3, w3,m2|m1 = EE, y1, w1, w2, x] identifies the following

quantities:

• P[mt = EU|x, yt]
• P[mt = UE|x, yt = 0]

• P[yt+1, wt+1|mt = UE, x]

• P[mt = JJ|x, yt]
• P[yt+1, wt+1|mt = JJ, x, yt]

Proof. The result follows from the Markovian properties of the model. For example:

P[yt+1,wt+1|mt = UE, x]

= P[yt+1, wt+1|mt = UE, x,mt−2 = EE,mt−1 = EU, wt−2]

= P[y4 = yt+1, w4 = wt+1,m3 = UE, y3, w3,m2|m1 = EE, y1, w1, w2, x]

Corollary 2. Cross-sectional distributions are identified from using transition prob-

abilities from Corollary 1.

B.5 Data, sample, and variable construction
We used the raw matched employer-employee data set constructed in Friedrich, Laun,

Meghir, and Pistaferri (2019). This links information from three data sources made

available by The Institute for Evaluation of Labour Market and Education Policy

(IFAU).

The primary data sources for this study are three datasets. The is the Longitu-

dinal Database on Education, Income, and Employment (LOUISE), which provides

12



comprehensive information on demographic and socioeconomic variables for the entire

working-age population in Sweden, spanning from 1990 to the present.

The second dataset is the Register-Based Labor Market Statistics (RAMS), which

covers employment spells in Sweden starting from 1985 and continuing up to the

present time. RAMS includes essential details such as gross annual earnings, the

initial and final remunerated month for each employee-firm spell, and unique firm

identifiers at the Corporate Registration Number level.

On the firm-related side, RAMS also records information about the industry and

the type of legal entity for all firms that employ workers. Finally, we draw from

the third data source, the Structural Business Statistics (SBS), which encompasses

accounting and balance sheet information for all nonfinancial corporations in Sweden,

spanning from 1997 to the present. Of particular interest within SBS is the variable

called FORBRUKNINGSVARDE, which provides a measure of value added at both

the firm and year level. All monetary variables are adjusted for inflation (detrended

with the CPI).

Our analysis is centered on the years 2000 to 2004. The sample we examine

comprises all firms classified as either a limited partnership or a limited company,

excluding banking and insurance companies. There are two specific restrictions in-

herited from the original data construction: spells with monthly earnings below 3,416

in 2008 Swedish krona are excluded from the sample, spells that span less than two

months of employment (i.e. instances where the start month is the same as the end

month) are also excluded from our analysis.

In addition to CPI detrending, we remove year means in the data and we limit it

to workers under the age of 50.

B.6 Likelihood for transitions
We estimate the following set of parameters S(x, y) and ṽ(y) = v(y)/V , λ0, λ1, ρ0

and ρ1, that we denote θ by maximizing the following log-likelihood subject to the
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Figure 6: Model stationary distribution and distribution in first step.
Notes: comparing distribution implied by the surplus to distribution estimated with empirical model
in Step 1.

moment constraints in the text:

max
θ

∑
x

ℓ0(x)
[

∑
y′

P[yt+1=y′,mt=UE|x]× log λ0ṽ(y
′)G0(ρ0S(x, y

′))

+ P[mt=UU|x]× log
(
1−

∑
y′

λ0ṽ(y
′)G0(ρ0S(x, y

′))
)]

+
∑
x,y

ℓ1(x, y)δ(x, y)
[

∑
y′

P[yt+1=y′,mt=JJ|yt=y, x]× log λ1ṽ(y
′)G1(ρ1S(x, y

′)− ρ1S(x, y))

+ P[mt=EE|yt=y, x]× log
(
1−

∑
y′

λ1ṽ(y
′)G1(ρ1S(x, y

′)− ρ1S(x, y))
)]

s.t. m1(θ) = m1,m2(θ) = m2

where P[yt+1=y′,mt=UE|x], P[mt=UU|x], P[yt+1=y′,mt=JJ|yt=y, x], P[mt=EE|yt=y, x]

and ℓ1(x, y) and ℓ0(x) are known from step 1. The moments m1(θ),m2(θ) are con-

structed by simulation, since given θ we can simulate wages and transitions.
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